Matlab for solving differential equations

To solve differential equations with Matlab, we may use the command "dsolve" in the following format:
dsolve('the differential equation', 'the initial condition, if any', 'the variable of differential equation')

Example 1: Find the solution of the following initial value problem
$y^{(4)}(x)-3 y(x)=0$, with the initial condition $y(0)=4$.
Enter dsolve('D4y-3*y =0','y(0)=4','x') in the command window. Then we get the solution
$\mathrm{C} 1 * \exp \left(-3^{\wedge}(1 / 4) * \mathrm{x}\right)+(-\mathrm{C} 1-\mathrm{C} 4+4)^{*} \exp \left(3^{\wedge}(1 / 4)^{*} \mathrm{x}\right)-\mathrm{C} 3^{*} \sin \left(3 \wedge(1 / 4)^{*} \mathrm{x}\right)+\mathrm{C} 4^{*} \cos \left(3 \wedge(1 / 4)^{*} \mathrm{x}\right)$
Notes:

1. In the above solution, $\mathrm{C} 1, \ldots, \mathrm{C} 4$ are arbitrary constants.
2. If dsolve cannot find an analytic solution for an equation, it prints the warning "Warning: explicit solution could not be found" and return an empty sym object.
3. There is no need to rewrite a differential equation based on $y(t)$ or $y(x)$. In the following
example we find the solution $\mathrm{p}(\mathrm{s})$ of a differential equation.

Example 2: Find the general solution of $p "(s)+e^{p(s)}=0$
Entering dsolve('D2p+exp(p) =0','s'), gives
$\log \left(-1 / 2^{*}\left(-1+\tanh \left(1 / 2^{*}(s+C 2) / \mathrm{C} 1\right)^{\wedge} 2\right) / \mathrm{C} 1 \wedge 2\right)$
(note that log in Matlab represents the natural log)
Example 3: Find the general solution of $3 y "(t)-y^{\prime}(t)+y=0$
Enter dsolve('3*D2y-Dy+y =0','t') in the command window. We get
$\mathrm{C} 1 * \exp \left(1 / 6^{*} \mathrm{t}\right) * \sin \left(1 / 6^{*} 11^{\wedge}(1 / 2) * \mathrm{t}\right)+\mathrm{C} 2 * \exp \left(1 / 6^{*} \mathrm{t}\right) * \cos \left(1 / 6^{*} 11 \wedge(1 / 2) * \mathrm{t}\right)$
It is also possible to get the general solution of a differential equation with unknown coefficients.

Example 3: Find the general solution of $-3 t y^{\prime \prime}(t)+\mathrm{ky}^{\prime}(\mathrm{t})=0$, where k is a constant.
Enter dsolve $\left('\left(-3^{*} \mathrm{t}\right) * \mathrm{D} 2 \mathrm{y}+\mathrm{k}^{*} \mathrm{y}=0\right.$ ', 't') to get the general solution
$\mathrm{C} 1 *{ }^{*} \wedge(1 / 2) * \operatorname{besselj}\left(1,2 / 3 *(-3 * \mathrm{k})^{\wedge}(1 / 2) * \mathrm{t} \wedge(1 / 2)\right)+\mathrm{C} 2 * \mathrm{t} \wedge(1 / 2) * \operatorname{bessely}(1,2 / 3 *(-$
$\left.3 * k)^{\wedge}(1 / 2)^{*} t^{\wedge}(1 / 2)\right)$
Where besselj and bessely are Bessel functions of first and second kinds, respectively.

