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ABSTRACT 
  The design engineer must predict the thermophysical properties of foods in order to design 

food storage and refrigeration equipment and estimate process times for refrigerating, freezing, 
heating or drying of foods.  Since the thermophysical properties of foods are strongly 
dependent upon chemical composition and temperature, composition based models provide a 
means of estimating these properties.  Numerous models of this type have been proposed and 
the designer of food processing equipment is thus faced with the challenge of selecting 
appropriate models from the plethora of those available.  This paper describes selected food 
thermophysical property models and evaluates their performance by comparing their results to 
experimental thermophysical property data.  The results given in this paper will be of value to 
the design engineer in the selection of appropriate food thermophysical property models. 

 Introduction 

 Knowledge of the thermophysical properties of foods is required to perform the various heat 

transfer calculations which are involved in the design of food storage and refrigeration equipment.  The 

estimation of process times for refrigerating, freezing, heating or drying of foods also requires knowledge of 

food thermal properties.  Due to the multitude of food items available, it is nearly impossible to 

experimentally determine and tabulate the thermal properties of foods for all possible conditions and 

compositions.  Because the thermal properties of foods are strongly dependent upon chemical composition 

and temperature, the most viable option is to predict the thermophysical properties of foods using 

mathematical models which account for the effects of chemical composition and temperature. 

 Composition data for foods are readily available in the literature [1-3].  This data consists of the 

mass fractions of the major components found in food items.  Such components include water, protein, fat, 

carbohydrate, fiber and ash.  Food thermal properties can be predicted by using this composition data in 

conjunction with temperature dependent mathematical models of the thermal properties of the individual 



components.  Choi and Okos [4] have developed mathematical models for predicting the thermal properties 

of food components as functions of temperature in the range of -40°C to 150°C.  In addition, Choi and 

Okos developed models for predicting the thermal properties of water and ice. 

 Thermophysical properties of foods which are often required for heat transfer calculations include 

ice fraction, specific heat and thermal conductivity.  This paper provides a summary of prediction methods 

for estimating these thermophysical properties.  In addition, the performance of the various thermophysical 

property models is evaluated by comparing their calculated results with experimentally determined 

thermophysical property data available from the literature. 

 Ice Fraction 

 In general, food items consist of water, dissolved solids and undissolved solids.  During the freezing 

process, as some of the liquid water crystallizes, the solids dissolved in the remaining liquid water become 

increasingly more concentrated, thus lowering the freezing temperature.  This unfrozen solution can be 

assumed to obey the freezing point depression equation given by Raoult's law [5].  Thus, based upon 

Raoult's law, Chen [6] proposed the following model for predicting the mass fraction of ice, xice , in a food 

item: 

 If the molecular weight of the soluble solids, Ms , is unknown, then the following simple method 

may be used to estimate the ice fraction of a food item [7]: 

 Because Equation 2 underestimates the ice fraction at temperatures near the initial freezing point 

and overestimates the ice fraction at lower temperatures, Tchigeov [8] proposed an empirical relationship to 

estimate the mass fraction of ice: 
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 Specific Heat 

Unfrozen 

 The specific heat of a food item, at temperatures above its initial freezing point, can be obtained 

from the mass average of the specific heats of the food components.  Thus, the specific heat of an unfrozen 

food item, cu , may be determined as follows: 

 If detailed composition data is not available, a simpler model for the specific heat of an unfrozen 

food item can be used [9]: 

Frozen 

 Below the freezing point of the food item, the sensible heat due to temperature change and the 

latent heat due to the fusion of water must be considered.  Because latent heat is not released at a constant 

temperature, but rather over a range of temperatures, an apparent specific heat can be used to account for 

both the sensible and latent heat effects.  A common method to predict the apparent specific heat of food 

items is that of Schwartzberg [10]: 

The specific heat of the food item above its initial freezing point may be estimated with Equation 4 or 

Equation 5. 

 Schwartzberg [11] expanded upon his earlier work and developed an alternative method for 

determining the apparent specific heat of a food item below the initial freezing point as follows: 

 A slightly simpler apparent specific heat model, which is similar in form to that of Schwartzberg 

[10], was developed by Chen [9].  Chen's model is an expansion of Siebel's equation [12] for specific heat 

and has the following form: 
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 Thermal Conductivity 

 Early work in the modeling of the thermal conductivity of foods includes Eucken's adaption of 

Maxwell's equation [13].  This model is based upon the thermal conductivity of dilute dispersions of small 

spheres in a continuous phase.  In order to improve the performance of the Eucken-Maxwell equation, Levy 

[14] introduced a modified version of the Eucken-Maxwell equation as follows: 

The parameter, F1 , introduced by Levy is given as follows: 

where 

and R1 is the volume fraction of component 1: 

 In an effort to account for the different structural features of foods, Kopelman [15] developed 

thermal conductivity models for both homogeneous and fibrous food items.  The differences in thermal 

conductivity parallel and perpendicular to the food fibers are taken into account in Kopelman's fibrous food 

thermal conductivity models. 

 For an isotropic, homogeneous two-component system composed of continuous and discontinuous 

phases, in which the thermal conductivity is independent of the direction of heat flow, Kopelman [15] 

developed the following expression for thermal conductivity, k: 

 For an anisotropic, fibrous two-component system in which the thermal conductivity is dependent 

upon the direction of heat flow, Kopelman [15] developed two expressions for thermal conductivity.  For 

heat flow which is parallel to the food fibers, Kopelman proposed the following expression for thermal 

conductivity, k: 
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If the heat flow is perpendicular to the food fibers, then the following expression for thermal conductivity, 

k⊥ , applies: 

 Performance of Thermophysical Property Models 

 The performance of the previously discussed thermophysical property models was determined by 

comparing their results with empirical thermophysical property data available from the literature [16-22].  

The data set contains 251 thermophysical property data points for the following food items:  1) Orange 

juice, 2) Lean beef, 3) Veal, 4) Lamb kidneys, 5) Lamb loin, 6) Cod, 7) Haddock, 8) Perch, and, 9) 

Poultry.  The composition data for the food items were obtained from the USDA [3]. 

 Tables 1 through 3 summarize the statistical analyses which were performed on the thermophysical 

property models discussed in this paper.  For each of the models, the following information is presented:  the 

average absolute prediction error (%), the standard deviation (%), the 95% confidence range of the mean 

(%), the kurtosis and the skewness. 

Performance of Ice Fraction Models 

 Of the three methods discussed for calculating ice fraction, that of Chen [6] produced the smallest 

average absolute prediction error, 4.04%, with a 95% confidence range of ±3.00%, as shown in Table 1.  In 

addition, the distribution of prediction errors was sharply peaked around the average absolute prediction 

error as evidenced by the large, positive value for the kurtosis, 31.2.  The ice fraction model of Tchigeov [8] 

also performed well.  Tchiegeov's method produced an average absolute prediction error of 4.75% with a 

95% confidence range of ±2.89%  In addition, the distribution of prediction errors was sharply peaked 

around the average absolute prediction error as evidenced by the large, positive value for the kurtosis, 12.7. 

 Tchigeov's model performed consistently for all the food types tested and this model produced its greatest 

average absolute prediction error of 7.07% for the orange juice data set.  The ice fraction method reported 

by Miles [7] produced a large average absolute prediction error of 10.5% and a 95% confidence range of 

±2.51%.  The average absolute prediction errors for this model ranged from 4.5% for the beef data set to 

20% for the orange juice data. 

 Both Chen's model and Tchigeov's model exhibited underestimation which tended to decrease as 

the temperature of the food item decreased.  Thus, the maximum error for these two methods occurred near 

the initial freezing point of the food item.  The model of Miles exhibited uniform error as a function of 

temperature. 
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 TABLE 1 
 Statistical Analysis of Ice Fraction Models 
Prediction Method Average Absolute 

Prediction Error 
(%) 

Standard 
Deviation 

(%) 

95% 
Confidence 
Range (%) 

Kurtosis Skewness 

Chen [6] 4.04 8.86 ±3.00 31.2 5.44 
Miles [7] 10.5 7.43 ±2.51 -1.32 0.653 
Tchigeov [8] 4.75 8.55 ±2.89 12.7 3.60 
 
 
 

Performance of Apparent Specific Heat Models 

 As shown in Table 2, the three apparent specific heat models, which were tested, produced large 

average absolute prediction errors along with large prediction variations.  The two models of Schwartzberg 

[10, 11] performed similarly, both exhibiting average absolute prediction errors of approximately 20% with 

large standard deviations of approximately 25%.  Their best performance was obtained with the fish data 

set, resulting in average absolute prediction errors of 10%, while their worst performance was obtained with 

the veal data set, producing average absolute prediction errors of 24%.  The method of Chen [9] produced a 

slightly larger average absolute prediction error of 20.5% with a standard deviation of 25.6%.  Chen's 

method performed best with the fish data set, producing an average absolute prediction error of 6.9% and 

performed worst with the veal data set, yielding an average absolute prediction error of 27%. 

 All of the apparent specific heat models exhibited large variations in prediction error.  In addition, 

the absolute value of the prediction error for all three apparent specific heat models decreased as the 

temperature decreased.  Thus, their maximum errors tended to occur near the initial freezing point of the 

food item. 
 
 
 TABLE 2 
 Statistical Analysis of Apparent Specific Heat Models 
Estimation Method Average Absolute 

Prediction Error 
(%) 

Standard 
Deviation 

(%) 

95% 
Confidence 
Range (%) 

Kurtosis Skewness 

Chen [9] 20.5 25.6 ±6.93 23.0 4.19 
Schwartzberg [10] 19.3 25.4 ±6.87 24.6 4.39 
Schwartzberg [11] 19.7 25.1 ±6.80 25.5 4.51 

 
 
 



Performance of Thermal Conductivity Models 

 As shown in Table 3, the thermal conductivity model developed by Levy [14] produced both the 

lowest average absolute prediction error and the lowest standard deviation, 6.86% and 4.89%, respectively.  

The average absolute prediction errors for Levy's method ranged from 4.4% for the lamb data set to 9.5% 

for the poultry data set.  The Kopelman [15] isotropic model performed well, producing an average absolute 

prediction error of 8.08% with a 95% confidence range of ±1.47%, and this model performed consistently 

for all data sets except for poultry.  For the poultry data set, Kopelman's isotropic model exhibited an 

average absolute prediction error of 12.6% while for the rest of the data sets, the model produced average 

absolute prediction errors of 8.3% or less.  The Kopelman perpendicular model produced good results, 

producing an average absolute prediction error of 8.96% with a 95% confidence range of ±1.42%.  The 

Kopelman parallel model exhibited a large average absolute prediction error of 16.4% with a large standard 

deviation of 10.4%. 

 Levy's model and Kopelman's isotropic model both tended to predict the thermal conductivity of 

frozen foods with less error than that of unfrozen foods.  The remaining models, however, predicted 

unfrozen food thermal conductivity with less error than that of frozen food thermal conductivity. 
 
 
 TABLE 3 
 Statistical Analysis of Thermal Conductivity Models 
Prediction Method Average Absolute 

Prediction Error 
(%) 

Standard 
Deviation 

(%) 

95% 
Confidence 
Range (%) 

Kurtosis Skewness 

Kopelman Isotropic [15] 8.08 6.12 ±1.47 -0.687 0.604 
Kopelman Parallel [15] 16.4 10.4 ±2.49 -0.690 0.516 
Kopelman Perpendicular [15] 8.98 5.90 ±1.42 -0.117 0.564 
Levy [14] 6.86 4.98 ±1.20 0.633 1.00 

 
 
 

 Conclusions 

 A review of several composition based, thermophysical property models for foods was presented in 

this paper.  In addition, the performance of each of the models was evaluated by comparing their calculated 

results with empirical thermophysical property data available from the literature. 

 For ice fraction prediction, the model of Chen [6] performed the best.  The model of Tchigeov [8] 

also performed well.  This method also has the added benefit of being easy to implement.  The ice fraction 

model of Miles [7], while being the simplest of the three models tested, produced large prediction errors. 

 All three apparent specific heat models [9-11] performed similarly, producing large average absolute 

prediction errors of approximately 20%.  These models also exhibited large prediction variations.  Of the 

three models tested, Schwartzberg's [10] model yielded the lowest average absolute prediction error.  The 



implementation of Schwartzberg's [11] model could be difficult as it relies on values for the specific heat of 

a fully frozen food item, which may not be readily available.  Of the three models tested, Chen's [9] model 

is the easiest to use. 

 The thermal conductivity model of Levy [14] exhibited the lowest average absolute prediction error. 

 Kopelman's [15] isotropic and perpendicular thermal conductivity models also performed well, and these 

models are less cumbersome to implement than Levy's model.  Kopelman's parallel model produced large 

average absolute prediction errors. 

 In summary, for ice fraction prediction, the model of Chen [6] performed the best while Tchigeov's 

[8] model also performed well.  For apparent specific heat, the model of Schwartzberg [10] performed the 

best.  Finally, for thermal conductivity, the model of Levy [14] gave the best results and Kopelman's [15] 

isotropic model also did well.  

Nomenclature 
 
ca apparent specific heat 
cf specific heat of fully frozen food 
ci specific heat of ith food component 
cu specific heat of unfrozen food 
E ratio of molecular weights of water and 

solids; E = Mw/Ms 
F1 parameter given by Equation 10 
k thermal conductivity 
k1 thermal conductivity of component 1 
k2 thermal conductivity of component 2 
kc thermal conductivity of continuous phase 
kd thermal conductivity of discontinuous 

phase 
k thermal conductivity with heat flow 

parallel to food fibers 
k⊥ thermal conductivity with heat flow 

perpendicular to food fibers 
L3 volume fraction of discontinuous phase 
Lo latent heat of fusion of water at 0°C; 

Lo = 333.6 kJ/kg 
Ms molecular weight of soluble solids 
Mw  molecular weight of water 
N2 volume fraction of discontinuous phase 
P parameter in Equation 15; 

P = N(1 - kd /kc ) 
R ideal gas constant; R = 8.314 kJ/(kmol⋅K) 
R1 volume fraction of component 1 
t food temperature (°C) 
tf initial freezing temperature of food (°C) 
Tf initial freezing point of food item (K) 

To freezing point of water; To = 273.2 K 
x1 mass fraction of component 1 
xb mass fraction of bound water 
xi mass fraction of ith food component 
xice  mass fraction of ice 
xs mass fraction of solids 
xwo  mass fraction of water in unfrozen food 
?c difference in specific heats of water and 

ice; ?c = cwater - cice 
? thermal conductivity ratio; ? = k1/k2 
?1 density of component 1 
?2 density of component 2 
s parameter given by Equation 11 
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