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Evaluation of Semi-Analytical/Empirical
Freezing Time Estimation Methods

Part I: Regularly Shaped Food Items

Bryan R. Becker, Ph.D., P.E. Brian A. Fricke, Ph.D., E.I.T.
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The freezing of food is one of the most significant applications of refrigeration. Numerous
semi-analytical/ empirical methods for predicting food freezing times have been proposed.
Therefore, a quantitative evaluation of selected semi-analytical/empirical food freezing time
prediction methods is provided in two parts. This report focuses on methods that apply to reg-
ularly shaped food items, while Part II covers techniques that apply to irregularly shaped
food items. The performance of these various methods is quantitatively evaluated by compar-
ing their numerical results to a comprehensive experimental freezing time data set compiled
from the literature.

INTRODUCTION
Preservation of food is one of the most significant applications of refrigeration. It is known

that the freezing of food effectively reduces the activity of microorganisms and enzymes, thus
retarding deterioration. In addition, crystallization of water reduces the amount of liquid water in
food items and inhibits microbial growth (Heldman 1975).

In order for food freezing operations to be cost effective, it is necessary to optimally design
the refrigeration equipment to fit the specific requirements of the particular freezing application.
The design of such refrigeration equipment requires estimation of the freezing times of foods, as
well as the corresponding refrigeration loads.

Numerous methods for predicting food freezing times have been proposed. The designer is
thus faced with the challenge of selecting an appropriate estimation method from the plethora of
available methods. This paper focuses on those methods that apply to regularly shaped food
items, while Part II covers techniques that apply to irregularly shaped food items. The perfor-
mance of these various methods is quantitatively evaluated by comparing their numerical results
to a comprehensive experimental freezing time data set compiled from the literature. This evalu-
ation provides a consistent basis for the comparison of semi-analytical/empirical freezing time
estimation methods. It also establishes confidence in the use of these methods and facilitates the
designer’s selection of an appropriate freezing time estimation method.

THERMODYNAMICS OF THE FREEZING PROCESS
The freezing of food is a complex process. Prior to freezing, sensible heat must be removed

from the food to decrease its temperature from the initial temperature to the initial freezing point
of the food. This initial freezing point is somewhat lower than the freezing point of pure water
due to dissolved substances in the moisture within the food. At the initial freezing point, a por-
tion of the water within the food crystallizes and the remaining solution becomes more concen-
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trated. Thus, the freezing point of the unfrozen portion of the food is further reduced. As the
temperature continues to decrease, the formation of ice crystals increases the concentration of
the solutes in solution and depresses the freezing point further. Thus, it is evident that during the
freezing process, the ice and water fractions in the frozen food depend on temperature. Since the
thermophysical properties of ice and liquid water are quite different, the corresponding proper-
ties of the frozen food are temperature dependent. Therefore, due to these complexities, it is not
possible to derive exact analytical solutions for the freezing times of foods.

Theoretically, the freezing of food can be described via the Fourier heat conduction equation:

(1)

where T is temperature, t is time, ρ is the density of the food, c is the specific heat of the food,
k is the thermal conductivity of the food and x, y, and z are the coordinate directions. For ideal,
regularly shaped food items with constant thermophysical properties, uniform initial conditions,
constant external conditions and prescribed surface temperature or convection boundary condi-
tions, exact analytical solutions for Equation (1) exist, which permit freezing time estimation.
However, for practical freezing processes, food items are generally irregularly shaped with tem-
perature dependent thermophysical properties, and therefore, it is not possible to derive exact
analytical solutions for their freezing times.

Numerical estimates of food freezing times can be obtained using appropriate finite element
or finite difference computer programs. However, the effort required to perform this task makes
it impractical for the design engineer. In addition, two-dimensional and three-dimensional simu-
lations require time consuming data preparation and significant computing time. Hence, the
majority of the research effort to date has been in the development of semi-analytical/empirical
food freezing time prediction methods which make use of simplifying assumptions.

These semi-analytical/empirical freezing time prediction methods fall into two main catego-
ries. Methods in the first category apply to food items that have the following regular shapes:

• Infinite slabs
• Infinite circular cylinders
• Spheres

Methods in the second category, discussed in Part II, apply to food items that have irregular
shapes. These methods require a two-step procedure in which the freezing time is first estimated
by using one of the methods applicable to regularly shaped food items. Thus, freezing time esti-
mation for both regularly and irregularly shaped food items requires the use of the methods
described here.

FREEZING TIME ESTIMATION METHODS

Plank’s Equation
The most widely known method for estimating the freezing times of foods is that developed

by Plank (1913, 1941). In this method, the following is assumed:

• Only convective heat transfer occurs between the food item and the surrounding cooling
medium 

• The temperature of the food item is its initial freezing temperature and that this temperature is
constant throughout the freezing process

• Thermal conductivity for the frozen region is constant 

∂T
∂t
------ 1

ρc
------ ∂

∂x
----- k∂T

∂x
------ 

  ∂
∂y
----- k∂T

∂y
------ 

  ∂
∂z
----- k∂T

∂z
------ 

 + +=
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Plank’s freezing time estimation method is given as follows:

(2)

where Lf is the volumetric latent heat of fusion, Tf is the initial freezing temperature of the food,
Tm is the freezing medium temperature, D is the thickness of the slab or the diameter of the
sphere or infinite cylinder, h is the surface heat transfer coefficient, ks is the thermal conductiv-
ity of the fully frozen food, and P and R are geometric factors. For the infinite slab, P = 1/2 and
R = 1/8. For a sphere, P and R are 1/6 and 1/24, respectively; and for an infinite cylinder, P = 1/4
and R = 1/16.

The geometric factors, P and R provide insight as to the effect of shape on freezing time.
Plank’s shape factors indicate that an infinite slab of thickness D, an infinite cylinder of diame-
ter D, and a sphere of diameter D, if exposed to the same conditions, would have freezing times
in the ratio of 6:3:2. Hence, a cylinder will freeze in half the time of a slab and a sphere will
freeze in one-third the time of a slab.

Various researchers have noted that Plank’s method does not accurately predict the freezing
times of foods. This is due, in part, to the fact that Plank’s method assumes that food freezing
takes place at a constant temperature, and not over a range of temperatures as is the case in
actual food freezing processes. In addition, the thermal conductivity of the frozen food is
assumed constant, but in reality, the thermal conductivity varies greatly during freezing.
Another limitation of Plank’s equation is that it neglects the removal of sensible heat above the
freezing point. However, Plank’s method does have the advantage of being a simple model for
predicting food freezing time. Subsequently, researchers have focused on development of
improved semi-analytical/empirical cooling and freezing time estimation methods that account
for precooling and subcooling times, non-constant thermal properties, and phase change over a
range of temperatures.

Modifications to Plank’s Equation
Cleland and Earle (1977, 1979) improved on Plank’s model by incorporating corrections to

account for the removal of sensible heat both above and below the initial freezing point of the
food as well as temperature variation during freezing. Regression equations were developed to
estimate the P and R for infinite slabs, infinite cylinders, and spheres. In these regression equa-
tions, the effects of surface heat transfer, precooling and final subcooling are accounted for by
means of the Biot number, the Plank number, and the Stefan number, respectively.

The Biot number is defined as follows:

Bi = hD/k (3)

where h is the surface heat transfer coefficient, D is the characteristic dimension and k is the
thermal conductivity. In the literature on food freezing, it is accepted that the characteristic
dimension D is defined to be twice the shortest distance from the thermal center of a food item
to its surface. For an infinite slab, D is the thickness. For an infinite cylinder or a sphere, D is the
diameter. These definitions will be adopted for this paper, unless otherwise noted.

In general, the Plank number is defined as follows:

Pk = Cl(Ti −  Tf)/∆H (4)

t
Lf

Tf Tm–
----------------- PD

h
-------- RD2

ks
----------+

 
 
 

=
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where Cl is the volumetric specific heat of the unfrozen phase and ∆H is the volumetric enthalpy
change of the food between Tf and the final food temperature. The Stefan number is similarly
defined as follows:

Ste = Cs(Tf −  Tm)/∆H (5)

where Cs is the volumetric specific heat of the frozen phase.
In the method of Cleland and Earle (1977, 1979), food freezing times are calculated with a

modified version of Plank’s equation. Plank’s original geometric factors P and R are replaced
with the modified values given in Table 1, and the latent heat Lf in Plank’s equation is replaced
with the volumetric enthalpy change of the food ∆H10, between the freezing temperature Tf and
the final center temperature, assumed to be − 10°C. As shown in Table 1, P and R are functions
of the Plank number and the Stefan number. Both of these parameters should be evaluated using
the enthalpy change ∆H10. Thus, the modified Plank equation takes the following form:

(6)

where ks is the thermal conductivity of the fully frozen food.

Cleland and Earle (1984) noted that these prediction formulae do not perform as well when
applied to situations with final center temperatures other than − 10°C. They proposed the follow-
ing modified form of Equation (6) to account for different final center temperatures.

(7)

where Tref is − 10°C, Tc is the final product center temperature, and ∆H10 is the volumetric
enthalpy difference between the initial freezing temperature Tf , and − 10°C. The values of P
and R, the Plank number, and the Stefan number should be evaluated using ∆H10, as previously
discussed.

Hung and Thompson (1983) also improved on Plank’s equation to develop an alternative
freezing time estimation method for infinite slabs. Their equation incorporates the volumetric
change in enthalpy ∆H18 for the freezing process as well as a weighted average temperature dif-

Table 1. Expressions for P and R from Cleland and Earle (1977, 1979)

Shape P and R Expressions

Infinite slab

Infinite cylinder

Sphere

t
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ference between the initial temperature of the food and the freezing medium temperature. This
weighted average temperature difference ∆T is given as follows:

(8)

where Tc is the final center temperature of the food and ∆H18 is the enthalpy change of the food
between the initial temperature and the final center temperature, assumed to be − 18°C. Empirical
equations were developed to estimate the geometric factors P and R for infinite slabs as follows:

(9)

R = 0.2079 −  0.2656U Ste (10)

where U = ∆T/(Tf −  Tm). In these expressions, the Plank number and the Stefan number should
be evaluated using the enthalpy change ∆H18. The freezing time prediction model is written as:

(11)

Cleland and Earle (1984) found that by applying their correction factor to the Hung and
Thompson model, the prediction accuracy of the model was improved for final temperatures
other than − 18°C. The correction to the Hung and Thompson model is as follows:

(12)

where Tref is − 18°C, Tc is the product final center temperature, and ∆H18 is the volumetric
enthalpy change between the initial temperature Ti and − 18°C. The weighted average tempera-
ture difference ∆T, the Plank number, and the Stefan number should be evaluated using ∆H18.

Precooling, Phase Change, and Subcooling Time Calculations
Numerous researchers have taken a different approach to account for the effects of sensible

heat removal above and below the initial freezing point. In these methods, the total freezing
time, t, is the sum of the precooling, phase change and subcooling times:

t = t1 + t2 + t3 (13)

where t1, t2, and t3 are the precooling, phase change, and subcooling times, respectively. 
Lacroix and Castaigne (1987a, 1987b, 1988) suggested the use of f and j factors to determine

the precooling and subcooling times of foods. They presented equations, given in Tables 2, 3,
and 4, for estimating the values of f and j for infinite slabs, infinite cylinders, and spheres. Note
that throughout the method presented by Lacroix and Castaigne, the Biot number (Bi = hL/k), is
based on the shortest distance between the thermal center of the food item and its surface L, not
twice that distance.
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Table 2. Expressions for Estimating f and jc for
Thermal Center Temperature of Infinite Slabs

(Lacroix and Castaigne 1987a)
Biot Number 

Range Equations for f and j factors

Bi ≤ 0.1

0.1 < Bi ≤ 100
where

Bi > 100

Table 3. Expressions for Estimating f and jc for
Thermal Center Temperature of Infinite Cylinders

(Lacroix and Castaigne 1987a)

Biot Number 
Range Equations for f and j factors

Bi ≤ 0.1

0.1 < Bi ≤ 100
where

and J0(v) and J1(v) are zero order and first order Bessel functions, respectively.

Bi > 100

fα
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Bi
----------=

jc 1.0=

fα
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u2
----------=
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2 sin u

u sin u cos u+
-----------------------------------=

u 0.860972 0.312133ln Bi( ) 0.007986 ln Bi( )[ ]2 0.016192 ln Bi( )[ ]3–+ +=

   0.001190 ln Bi( )[ ]4 0.000581 ln Bi( )[ ]5+–

fα
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----- 0.9332=

jc 1.273=
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2J1 v( )

v J0
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----------------------------------------=

v 1.257493 0.487941ln Bi( ) 0.025322 ln Bi( )[ ]2 0.026568 ln Bi( )[ ]3–+ +=

   0.002888 ln Bi( )[ ]4 0.001078 ln Bi( )[ ]5+–

fα
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Lacroix and Castaigne (1987a, 1987b, 1988) gave the following expression for estimating the
precooling time t1:

(14)

where Tm is the coolant temperature, Ti is the initial temperature of the food, and Tf is the initial
freezing point of the food. The f1 and j1 factors are determined from a Biot number that is calcu-
lated using an average thermal conductivity. This average thermal conductivity is based on the
thermal conductivity of the unfrozen food, and the thermal conductivity of the frozen food eval-
uated at the temperature (Tf + Tm )/2.

A similar expression is given for estimating the subcooling time t3:

(15)

where Tc is the final temperature at the center of the food item. The f3 and j3 factors are deter-
mined from a Biot number that is calculated using the thermal conductivity of the frozen food
evaluated at the temperature (Tf + Tm )/2.

Lacroix and Castaigne (1987a, 1987b, 1988) model the phase change time t2 with
Plank’s equation:

(16)

Table 4. Expressions for Estimating f and jc for Thermal Center Temperature of Spheres
(Lacroix and Castaigne 1987a)

Biot Number 
Range Equations for f and j factors

Bi ≤ 0.1

0.1 < Bi ≤ 100
where

Bi > 100
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where Lf is the volumetric latent heat of fusion of the food, P and R are the original Plank geo-
metric shape factors, kc is the thermal conductivity of the frozen food at the temperature
(Tf + Tm )/2, and Bic is the Biot number for the subcooling period (Bic = hL/kc).

Lacroix and Castaigne (1987a, 1987b) noted that by making adjustments to Plank’s geometric
factors P and R better agreement between predicted freezing times and experimental data was
obtained. Using regression analysis, Lacroix and Castaigne suggested that the geometric factors
should be as follows.

For infinite slabs:

P = 0.51233 (17)

R = 0.15396 (18)

For infinite cylinders:

P = 0.27553 (19)

R = 0.07212 (20)

For spheres:

P = 0.19665 (21)

R = 0.03939 (22)

Pham (1984) also devised a food freezing time estimation method, similar to Plank’s equa-
tion, in which sensible heat effects are considered by calculating precooling, phase change and
subcooling times separately. In addition, Pham suggested the use of a mean freezing point,
which is assumed to be 1.5 K below the initial freezing point of the food, to account for freezing
which takes place over a range of temperatures. Pham’s freezing time estimation method is
stated in terms of the volume and surface area of the food item and is therefore applicable to
food items of any shape. This method is given as:

(23)

where t1 is the precooling time, t2 is the phase change time, and t3 is the subcooling time with
the remaining variables defined as shown in Table 5.

Pham (1986) significantly simplified the previous freezing time estimation method (Pham
1984) to yield a single equation which includes precooling, phase change and subcooling:

(24)

in which
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where Cl and Cs are volumetric specific heats above and below freezing, respectively, Ti is the
initial food temperature, Lf is the volumetric latent heat of freezing, and V is the volume of the
food item. By curve-fitting to existing experimental data, Pham (1986) proposed the following
equation to determine the mean freezing temperature Tfm for use in Equations (25) and (26):

(27)

where Tc is the final center temperature and Tm is the freezing medium temperature.
Ilicali and Saglam (1987) and Ilicali et al. (1992) describe the development of a freezing time

estimation method in which the freezing time is calculated as the sum of a cooling period and a
freezing period. The cooling period is the time required for the food item to cool from an

Table 5. Definition of Variables for Freezing Time Estimation Method of Pham (1984)

Process Variables

Precooling

Phase change

Subcooling

Notes: As is the area through which heat is transferred
Bil is the Biot number for the unfrozen phase
Bis is the Biot number for the frozen phase
Q1, Q2, and Q3 are the heats of precooling, phase change and subcooling, respectively
∆Tm1, ∆Tm2, and ∆Tm3 are the corresponding log-mean temperature driving forces
Tc is the final thermal center temperature
Tfm is the mean freezing point, assumed to be 1.5 K below the initial freezing point
To is the mean final temperature
V is the volume of the food item

i 1=
k1 6=

Q1 C1 Ti Tfm–( )V=

Bi1 Bii Bis+( ) 2⁄=

Tm1∆
Ti Tm–( ) Tfm Tm–( )–

ln
Ti Tm–
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i 2=
k2 4=

Q2 LfV=
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Tm2∆ Tfm Tm–=

i 3=
k3 6=

Q3 Cs Tfm Tc–( )V=

Bi3 Bis=

Tm3∆
Tfm Tm–( ) To Tm–( )–

ln
Tfm Tm–
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--------------------------------------------------------=

Tfm 1.8 0.26Tc 0.105Tm+ +=
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assumed uniform temperature distribution to a temperature distribution such that the food item’s
mass average temperature  equals its initial freezing temperature. The freezing period is the
additional time required to reduce the center temperature of the food item to the final center tem-
perature Tc.

In this method, cooling time for an infinite slab is determined from the following equation:

(28)

where A1 is a parameter which depends on Biot number and is tabulated for infinite slabs by
Kutateladze and Borishanskii (1966) and λ1 is the first root of the following equation:

(29)

In Equations (28) and (29)  is the mass average temperature of the food item at the end of
the cooling process, which is assumed to be the initial freezing point of the food, Tm is the freez-
ing medium temperature, Ti is the initial temperature of the food item, Fo is the Fourier number
for the cooling process (Fo = αl t/L2), αl is the thermal diffusivity of the unfrozen food, t is the
cooling time, L is the half thickness of the infinite slab, and Bi is the Biot number for the cooling
process (Bi = hL/kl).

The time required to freeze the infinite slab to the final state with specified center tempera-
ture, Tc , can be calculated from the following expression:

(30)

where A1 and λ1 are as defined above, Bi is the Biot number for the freezing process (Bi =
hL/ks), Fo is the Fourier number for the freezing process, Fo = αeff t/L2, and αeff is the “effec-
tive” thermal diffusivity of the frozen food.

Because the cooling process is assumed to terminate when the mass average temperature of
the food item reaches the initial freezing point, partial freezing occurs at locations within the
food where the temperature is below the initial freezing point. To account for this partial freez-
ing, an effective thermal diffusivity for the freezing process αeff is defined as follows:

(31)

where ceff is the effective specific heat for the freezing process:

(32)

and ∆Heff is the effective enthalpy change for the freezing process, which, for an infinite slab, is
assumed to be 75% of the experimentally determined enthalpy change necessary to reduce the
temperature of the food item from an initial uniform freezing point temperature to a final state
where the specified center temperature Tc is obtained.

T

T Tm–
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cotλn λn Bi⁄=
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Using the method of Ilicali and Saglam (1987) and Ilicali et al. (1992), the cooling time of
infinite cylinders can be determined from:

(33)

where A1 is a parameter that depends on Biot number and is tabulated for infinite cylinders by
Kutateladze and Borishanskii (1966), Fo is the Fourier number for the cooling process (Fo =
αl t/L2), and λ1 is the first root of the following equation:

(34)

In Equations (33) and (34), J0 and J1 are Bessel functions of the first kind, order zero and one,
respectively. The freezing time may be estimated from:

(35)

where Fo is the Fourier number for the freezing process (Fo = αeff t/L2) and αeff is calculated
from Equations (31) and (32) assuming that the effective enthalpy difference is 73% of the
experimentally determined enthalpy change necessary to reduce the temperature of the food
item from an initial uniform freezing point temperature to a final state where the specified center
temperature Tc is obtained.

For a sphere, the cooling time can be determined from:

(36)

where A1 is a parameter that depends on Biot number and is tabulated for spheres by Kutate-
ladze and Borishanskii (1966), Fo is the Fourier number for the cooling process (Fo = αlt/L2),
and λ1 is the first root of the following equation:

(37)

The freezing time of a sphere may be estimated from:

(38)

where Fo is the Fourier number for the freezing process (Fo = αeff t/L2) and αeff is calculated
from Equations (31) and (32) assuming that the effective enthalpy difference is 70% of the
experimentally determined enthalpy change necessary to reduce the temperature of the food
item from an initial uniform freezing point temperature to a final state where the specified center
temperature Tc is obtained.
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Empirical Methods

Several empirical methods have been developed for estimating food freezing times (Albin
et al. 1979, Bazan and Mascheroni 1984, Hayakawa et al. 1983, Salvadori and Mascheroni
1991, Sheen and Hayakawa 1991). Many of these methods are limited to only a specific food
geometry or are cumbersome to use. An exception to this statement is the method of Salvadori
and Mascheroni (1991).

Salvadori and Mascheroni (1991) suggest that the temperature at the thermal center of a food
item can be related to a dimensionless freezing time parameter X, which accounts for the effects
of time, process parameters, thermophysical properties, and product size. The dimensionless
freezing time parameter is given as follows:

(39)

where Fo is the Fourier number (Fo = αlt/L2), αl is the thermal diffusivity of the unfrozen food,
t is the freezing time, L is the half thickness of an infinite slab or the radius of an infinite cylin-
der or sphere, Bi is the Biot number (Bi = hL/kl), and kl is the thermal conductivity of the unfro-
zen food. The experimentally determined constants m, n, and b, given in Table 6, depend on
product geometry.

Salvadori and Mascheroni determined that the thermal center temperature of a food item Tc
and its dimensionless freezing time parameter X are linearly related as follows:

(40)

The constants A and B depend on geometry and are given in Table 6. Equations (39) and (40)
can be combined and rearranged to give the freezing time as follows: 

(41)

Salvadori and Mascheroni state that the above equation is valid for − 18°C ≤ Tc ≤ − 5°C. 

Table 6. Parameters used in Freezing Time Estimation Method
of Salvadori and Mascheroni (1991)

Geometry m n b A B
Slaba 1.04 0.09 0.18 − 1.08125 62.9375
Slabb 1.03 0.10 0.16 − 0.94250 62.4350
Infinite cylinder 1.00 0.09 0.17 − 0.46875 28.7625
Sphere 0.90 0.06 0.18 − 0.16875 15.3625
aHeat transfer perpendicular to fibers. bHeat transfer parallel to fibers.
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PERFORMANCE OF FOOD FREEZING TIME ESTIMATION METHODS
The performance of each of the previously discussed food freezing time estimation methods

was analyzed by comparing calculated freezing times with empirical freezing time data avail-
able from the literature. The empirical freezing time data set is shown in Table 7.

Table 7. Empirical Freezing Time Data Set

Shape
Number of
Data Points Material Reference

Infinite slab 43 Tylose gel Cleland and Earle (1977)
Infinite slab 6 Mashed potato Cleland and Earle (1977)
Infinite slab 6 Minced lean beef Cleland and Earle (1977)
Infinite slab 23 Tylose gel Hung and Thompson (1983)
Infinite slab 9 Lean beef Hung and Thompson (1983)
Infinite slab 9 Mashed potato Hung and Thompson (1983)
Infinite slab 9 Carp meat Hung and Thompson (1983)
Infinite slab 9 Ground beef Hung and Thompson (1983)
Infinite slab 32 Tylose gel Pham and Willix (1990)
Infinite cylinder 30 Tylose gel Cleland and Earle (1979)
Sphere 30 Tylose gel Cleland and Earle (1979)
Sphere 20 Apple Ilicali and Saglam (1987)
Sphere 48 Beef Tocci and Mascheroni (1994)

Table 8. Thermal Property Data Used for Calculation of Freezing Times

Property Tylose Gela
Mashed 
Potatoa Lean Beefa

Ground 
Beefa Carpa Applesb

kl W/(m⋅Κ) 0.55 0.53 0.50 0.44 0.48 0.43
ks W/(m⋅Κ) 1.65 1.90 1.55 1.45 1.65 1.45
Cl µJ/(m3⋅Κ) 3.71 3.66 3.65 3.38 3.70 3.12
Cs µJ/(m3⋅Κ) 1.90 1.95 1.90 1.95 2.10 1.54
Lf µJ/m3 209 235 209 188 218 230
Tf °C − 0.6 − 0.6 − 1.0 − 1.2 − 0.8 − 1.0

aCleland and Earle (1984) bRamaswamy and Tung (1981)

Table 9. Effective Thermal Diffusivitiesa

Shape Material αeff , mm2/sb αeff , mm2/sc

Infinite slab Tylose gel 0.083 0.151
Mashed potato 0.094 0.159
Carp 0.085 0.142
Lean beef 0.082 0.137
Ground beef 0.079 0.134

Infinite cylinder Tylose gel 0.085 —
Sphere Tylose gel 0.089 —

Apple 0.097 0.159
Ground beef — 0.134

aFrom Ilicali and Saglam (1987) 
bFor final center temperature of − 10°C
cFor final center temperature of − 18°C
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Some of the experimental data shown in Table 7 was generated by freezing tylose gel. This
material, first introduced by Riedel (1960), is a commonly used food analog consisting of 23%
methylcellulose and 77% water. Its thermal properties are similar to those of lean beef and its
freezing behavior closely resembles that of foods with high water content (Pham and Willix
1990). The thermal properties of tylose gel, as well as the thermal properties of the other food
items used in this study, are given in Table 8. In addition, the effective thermal diffusivities of
the food items are given in Table 9.

Performance of Food Freezing Time Estimation Methods
Applicable to Infinite Slabs

Table 10 summarizes the statistical analysis which was performed on the freezing time esti-
mation methods applicable to infinite slabs of food. Because the freezing time estimation
method of Cleland and Earle (1977) was based on a curve fit to their data, this method performs
well when compared against their data for tylose gel, mashed potatoes, and minced lean beef.
The method of Cleland and Earle (1977) had an average absolute prediction error of 2.16%
when it was used to predict freezing times from their data set. Because the final center tempera-
ture for the Hung and Thompson (1983) data set and the Pham and Willix (1990) data set was
− 18°C, the final center temperature correction factor was required by the Cleland and Earle
(1977) method for these two data sets. Without the correction factor, the Cleland and Earle
method produced an average absolute prediction error of 12.3% for both the Hung and Thomp-
son data set and the Pham and Willix data set. However, with the final center temperature cor-
rection factor applied, the average absolute prediction error was reduced to 7.52% for both the
Hung and Thompson (1983) and Pham and Willix (1990) data sets. The average absolute predic-
tion error of the Cleland and Earle method for all tests combined was 5.62%. The distribution of
the absolute prediction errors was fairly well peaked around the mean, and the 95% confidence
range was among the lowest (±0.818%).

Likewise, the food freezing time estimation method of Hung and Thompson (1983) was based
on a curve fit to their data, and thus, their method performs well when compared with their data
for tylose gel, lean beef, mashed potatoes, carp and ground beef. When comparing the results of
the Hung and Thompson method to the freezing times from the data set of Cleland and Earle
(1977), the final center temperature correction factor reduced the average absolute prediction
error from 23.6% to 11.3%. Overall, the Hung and Thompson (1983) method yielded an average
absolute prediction error of 6.66%, with a 95% confidence range of ±1.16%. The absolute pre-
diction error was fairly well distributed about the mean.

Table 10. Statistical Analysis of Food Freezing Time Estimation Methods
Applicable to Infinite Slabs

Estimation Method

Ave. Absolute 
Prediction 
Error, %

Standard 
Deviation,

%

95% 
Confidence 
Range, % Kurtosis Skewness

Cleland and Earle (1977) 5.62 5.00 ±0.818 1.96 1.39
Hung and Thompson (1983) 6.66 7.12 ±1.16 5.79 2.23
Pham (1984) 5.85 4.65 ±0.761 2.03 1.37
Pham (1986) 6.56 5.02 ±0.821 1.72 1.24
Ilicali and Saglam (1987) 12.9 15.9 ±2.60 6.16 2.47
Lacroix and Castaigne (1987) 7.38 6.77 ±1.11 1.49 1.37
Salvadori and Mascheroni (1991) 7.32 5.56 ±0.909 0.674 0.943
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The two estimation methods developed by Pham (1984, 1986) performed consistently when
compared against all of the experimental data sets. The average absolute prediction error for the
Pham (1984) method was 5.85% with a 95% confidence range of ±0.761%, while the average
absolute prediction error for the slightly simpler Pham (1986) method was 6.56% with a 95%
confidence range of ±0.821%. The distribution of absolute prediction errors for both of Pham’s
methods was relatively flat.

The food freezing time estimation method of Ilicali and Saglam (1987) performed satisfacto-
rily, achieving an average absolute prediction error of 7.77%, when compared against the data
set of Cleland and Earle (1977) and Pham and Willix (1990). However, when compared to the
Hung and Thompson (1983) data set, the Ilicali and Saglam method produced an average abso-
lute error of 20.9%. Overall, the average absolute prediction error of the Ilicali and Saglam
method was found to be 12.9% with a large 95% confidence range of ±2.60%. Ilicali and Sag-
lam (1987) noted that large prediction errors occurred when the freezing period temperature
ratio  was less than 0.3. They found that by subdividing the freezing period
into a primary freezing period and a secondary freezing period, these large absolute prediction
errors could be reduced.

Overall, the method of Lacroix and Castaigne (1987) produced an average absolute prediction
error of 7.38% with a 95% confidence range of ±1.11%. Their method performed best when
compared to the data sets of Cleland and Earle (1977) and Pham and Willix (1990), resulting in
an average absolute prediction error of 3.69%. The Lacroix and Castaigne method performed its
worst when compared to the data set of Hung and Thompson (1983), producing an average
absolute prediction error of 12.4%.

The food freezing time estimation method of Salvadori and Mascheroni (1991) performed
satisfactorily overall, achieving an average absolute prediction error of 7.32% with a modest
95% confidence range of ±0.909%. Its best results were obtained when compared to the data sets
of Cleland and Earle (1977) and Pham and Willix (1990). The average absolute error of the Sal-
vadori and Mascheroni method for these two data sets was found to be 6.13%. The Salvadori
and Mascheroni method produced an average absolute error of 9.06% when compared to the
data set of Hung and Thompson (1983).

Performance of Food Freezing Time Estimation Methods
Applicable to Infinite Cylinders

The statistical analysis of the freezing time estimation methods applicable to infinite cylinders
of food is given in Table 11. As with infinite slabs, the method of Cleland and Earle (1979) per-
forms well when compared against their data for tylose gel cylinders. An average absolute pre-
diction error of 2.35% was obtained when used to predict freezing times from their data set.

Table 11. Statistical Analysis of Food Freezing Time Estimation Methods
Applicable to Infinite Cylinders

Estimation Method

Ave. Absolute 
Prediction 
Error, %

Standard 
Deviation,

%

95% 
Confidence 
Range, % Kurtosis Skewness

Cleland and Earle (1979) 2.35 1.74 ±0.649 0.530 1.08
Pham (1984) 4.44 2.92 ±1.09 − 0.731 0.421
Pham (1986) 3.93 2.76 ±1.03 0.077 0.640
Ilicali and Saglam (1987) 3.44 3.13 ±1.17 − 0.244 0.973
Lacroix and Castaigne (1987) 3.65 3.36 ±1.25 0.898 1.20
Salvadori and Mascheroni (1991) 7.32 3.57 ±1.33 − 1.09 0.00

Tf Tm–( ) T Tm–( )⁄
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The food freezing time estimation methods developed by Pham (1984, 1986), Ilicali and Sag-
lam (1987) and Lacroix and Castaigne (1987) performed equally well, each having an average
absolute prediction error of less than 4.44% and a 95% confidence range of less than ±1.25%.
The method of Salvadori and Mascheroni (1991) produced a large average absolute prediction
error of 7.32% with a large 95% confidence range of ±1.33%.

Performance of Food Freezing Time Estimation Methods Applicable to Spheres
The statistical analysis of the freezing time estimation methods applicable to spherical food

items is given in Table 12. The method of Cleland and Earle (1979) performs well when com-
pared against their data for tylose gel spheres. An average absolute prediction error of 3.29%
was obtained by the method of Cleland and Earle (1979) when used to predict freezing times
from their data set. The average absolute prediction error of the Cleland and Earle method when
compared to all spherical food data was 9.92% with a 95% confidence range of ±1.99%.

Both of the methods developed by Pham (1984, 1986) accurately predicted the freezing times
of both the Cleland and Earle (1979) data set and the Tocci and Mascheroni (1994) data set,
achieving an average absolute prediction error of less than 7.06%. Comparison of both of
Pham’s methods with the Ilicali and Saglam (1987) data set for apples, however, produced an
average absolute prediction error of 34.3%. Overall, the average absolute prediction error was
less than 12.3% with a 95% confidence range less than ±2.50% for both of Pham’s methods.

The method of Ilicali and Saglam (1987) yielded its best results when compared to their data
set on apples. When compared to this data set, an average absolute prediction error of 6.39%
was obtained. For all spherical data, Ilicali and Saglam’s method produced the lowest average
absolute prediction error, 6.85%, also the narrowest 95% confidence range, ±0.952%.

The method of Lacroix and Castaigne (1987a, 1987b, 1988) performed similarly to that of
Pham’s (1984, 1986) methods. Overall, the Lacroix and Castaigne method yielded an average
absolute prediction error of 11.0% with a large 95% confidence range of ±2.49%. The method of
Salvadori and Mascheroni (1991) performed well overall, yielding an average absolute predic-
tion error of 7.53% with a fairly narrow 95% confidence range of ±1.37%.

CONCLUSIONS
The food freezing time estimation methods developed by Cleland and Earle (1977, 1979) per-

formed well for infinite slabs and infinite cylinders. The methods of Pham (1984, 1986) per-
formed better with infinite slabs and infinite cylinders of food than they did for spherical food
items. The method of Ilicali and Saglam (1987) produced low prediction errors for cylindrical

Table 12. Statistical Analysis of Food Freezing Time Estimation Methods
Applicable to Spheres

Estimation Method

Ave. Absolute 
Prediction 
Error, %

Standard 
Deviation,

%

95% 
Confidence 
Range, % Kurtosis Skewness

Cleland and Earle (1979) 9.92 9.94 ±1.99 2.24 1.60
Pham (1984) 12.3 12.5 ±2.50 1.62 1.59
Pham (1986) 10.4 12.4 ±2.49 2.89 1.88
Ilicali and Saglam (1987) 6.85 4.75 ±0.952 0.680 0.930
Lacroix and Castaigne (1987) 11.0 12.4 ±2.49 3.83 2.01
Salvadori and Mascheroni (1991) 7.53 6.85 ±1.37 3.25 1.72
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and spherical food items, but produced large prediction errors for infinite slabs of food. The
method of Lacroix and Castaigne (1987a, 1987b, 1988) performed best for infinite cylinders of
food and produced high prediction errors for infinite slabs and spheres. The method of Salvadori
and Mascheroni (1991) performed consistently with all three regular shapes, producing moder-
ately large prediction errors.

In summary, for infinite slabs, the methods of Pham (1984, 1986), Hung and Thompson
(1983) and Cleland and Earle (1977) all performed equally well. For infinite cylinders, the meth-
ods of Pham (1986) and Cleland and Earle (1979) performed the best while the methods of Ili-
cali and Saglam (1987) and Lacroix and Castaigne (1987) also did well. Finally, for spheres, the
methods of Ilicali and Saglam (1987) and Salvadori and Mascheroni (1991) gave the best
results.
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NOMENCLATURE

A parameter given in Table 6
A1 parameter in Equations 

(28),(30),(33),(35),(36),(38)
As surface area of food item, m2

b parameter given in Table 6
B parameter given in Table 6
Bi Biot number
Bi1 Biot number for precooling; 

Bi1 = (Bil + Bis)/2
Bi2 Biot number for phase change; Bi2 = Bis
Bi3 Biot number for subcooling; Bi3 = Bis
Bic Biot number evaluated at kc; Bic = hL/kc
Bil Biot number for unfrozen food; Bil = hD/kl
Bis Biot number for fully frozen food; 

Bis = hD/ks
c specific heat of food item, J/(kg⋅K)
ceff effective specific heat of food item, J/(kg⋅K)
Cl volumetric specific heat of unfrozen food, 

J/(m3⋅K)
Cs volumetric specific heat of fully frozen food, 

J/(m3⋅K)
D slab thickness or cylinder/sphere diameter, m
f cooling time parameter
f1 cooling time parameter for precooling
f3 cooling time parameter for subcooling
Fo Fourier number; Fo = αt/L
h heat transfer coefficient, W/(m2⋅K)
j cooling time parameter
j1 cooling time parameter for precooling
j3 cooling time parameter for subcooling
jc cooling time parameter applicable to thermal 

center
J0(x) Bessel function of the first kind, order zero

J1(x) Bessel function of the first kind, order one
k thermal conductivity of food item, W/(m⋅K)
kc thermal conductivity of food evaluated at 

(Tf + Tm )/2, W/(m⋅K)
kl thermal conductivity of unfrozen food, 

W/(m⋅K)
ks thermal conductivity of fully frozen food, 

W/(m⋅K)
L half thickness of slab or radius of 

cylinder/sphere, m
Lf volumetric latent heat of fusion, J/m3

m parameter given in Table 6
n parameter given in Table 6
P Plank’s geometry factor
Pk Plank number; Cl (Ti - Tf )/∆H
Q1 volumetric heat of precooling, J/m3

Q2 volumetric heat of phase change, J/m3

Q3 volumetric heat of subcooling, J/m3

R Plank’s geometry factor
Ste Stefan number; Cs(Tf −  Tm)/∆H
t cooling or freezing time, s
t1 precooling time, s
t2 phase change time, s
t3 subcooling time, s
T product temperature, °C
Tc final center temperature of food item, °C
Tf initial freezing temperature of food item, °C
Tfm mean freezing temperature, °C
Ti initial temperature of food item, °C
Tm freezing medium temperature, °C
To mean final temperature, °C
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Tref reference temperature for freezing time 
correction factor, °C

average temperature of food item, °C
u parameter given in Table 1
U parameter in Equations (9) and (10);

U = ∆T/(Tf −  Tm)
v parameter given in Table 2
V volume of food item, m3

w parameter given in Table 3
x coordinate direction
X dimensionless freezing time parameter

given by Equation (39)
y coordinate direction
z coordinate direction
α thermal diffusivity of food, m2/s
αeff effective thermal diffusivity of food, m2/s
αl thermal diffusivity of unfrozen food, m2/s
∆H volumetric enthalpy difference, J/m3

∆H1 volumetric enthalpy difference, J/m3; 
∆H1 = Cl (Ti −  Tfm )

∆H2 volumetric enthalpy difference, J/m3; 
∆H2 = Lf + Cs(Tfm −  Tc )

∆H10 volumetric enthalpy difference between the 
initial freezing temperature Tf and − 10°C, 
J/m3

∆H18 volumetric enthalpy difference between the 
initial temperature Ti and − 18°C, J/m3

∆Heff effective enthalpy difference, J/kg
∆T weighted average temperature difference 

(°C) given by Equation (8)
∆T1 temperature difference, °C; 

∆T1 = (Ti + Tfm )/2 −  Tm
∆T2 temperature difference, °C; ∆T2 = Tfm - Tm
∆Tm1 temperature difference for precooling, °C
∆Tm2 temperature difference for phase change, °C
∆Tm3 temperature difference for subcooling, °C
λ1 first root of transcendental equation
ρ density of food item, kg/m3

ρs density of fully frozen food item, kg/m3
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