
VOL. 7, NO. 4 HVAC&R RESEARCH OCTOBER 2001
Evaluation of Thermophysical Property 
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The thermophysical properties of foods are required in order to calculate process times and to
design equipment for the storage and preservation of food. There are a multitude of food items
available, whose properties are strongly dependent upon chemical composition and tempera-
ture. Composition-based thermophysical property models provide a means of estimating prop-
erties of foods as functions of temperature. Numerous models have been developed and the
designer of food processing equipment is faced with the challenge of selecting appropriate ones
from those available. In this paper selected thermophysical property models are quantitatively
evaluated by comparison to a comprehensive experimental thermophysical property data set
compiled from the literature. 

For ice fraction prediction, the equation by Chen (1985b) performed best, followed closely by
that of Tchigeov (1979). For apparent specific heat capacity, the model of Schwartzberg (1976)
performed best, and for specific enthalpy prediction, the Chen (1985a) equation gave the best
results, followed closely by that of Miki and Hayakawa (1996). Finally, for thermal conductiv-
ity, the model by Levy (1981) performed best.

INTRODUCTION
Knowledge of the thermal properties of foods is required to perform the various heat transfer

calculations that are involved in the design of food storage and refrigeration equipment and esti-
mating process times for refrigerating, freezing, heating or drying of foods. The thermal proper-
ties of foods are strongly dependent upon chemical composition and temperature, and there are a
multitude of food items available. It is difficult to generate an experimentally determined data-
base of thermal properties for all possible conditions and compositions of foods. The most via-
ble option is to predict the thermal properties of foods using mathematical models that account
for the effects of chemical composition and temperature.

Composition data for foods are readily available in the literature from sources such as Hol-
land et al. (1991) and USDA (1975, 1996). These data consist of the mass fractions of the major
components found in food items. Food thermal properties can be predicted by using these com-
position data in conjunction with temperature-dependent mathematical models of the thermal
properties of the individual food constituents.

Thermophysical properties of foods that are often required for heat transfer calculations
include ice fraction, specific heat capacity, specific enthalpy, and thermal conductivity. In this
paper, prediction methods for estimating these thermophysical properties are quantitatively
evaluated by comparing their calculated results with an extensive, experimentally determined,
thermophysical property data set compiled from the literature.

Constituents commonly found in food items include water, protein, fat, carbohydrate, fiber,
and ash. Choi and Okos (1986) have developed equations presented in Tables 1 and 2 for
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predicting the thermal properties of these components and ice as functions of temperature in the
range of −40°C to 150°C. Choi and Okos (1986) report that the equations presented in Tables 1
and 2 produce an error of 6% or less.

Composition-based prediction methods for estimating the thermal properties of foods require
detailed knowledge of the mass fractions of the various components that make up the food.
Composition data for foods are readily available in the literature and can be obtained from
sources such as Holland et al. (1991) and USDA (1975, 1996).

In general, the thermophysical properties of a food item are well behaved when the temper-
ature is above the initial freezing point. However, below the initial freezing point, the thermo-
physical properties of a food item vary greatly due to the complex processes involved during
freezing. Prior to freezing, sensible heat must be removed from the food to decrease its

Table 1. Thermal Property Equations for Food Componentsa (−40°C ≤ t ≤ 150°C)

Thermal Property Food Component Thermal Property Model

Thermal Conductivity, 
W/(m·K)

Protein
Fat
Carbohydrate
Fiber
Ash

k = 1.7881 × 10−1 + 1.1958 × 10−3t – 2.7178 × 10−6t2

k = 1.8071 × 10−1 – 2.7604 × 10−3t – 1.7749 × 10−7t2

k = 2.0141 × 10−1 + 1.3874 × 10−3t – 4.3312 × 10−6t2

k = 1.8331 × 10−1 + 1.2497 × 10−3t – 3.1683 × 10−6t2

k = 3.2962 × 10−1 + 1.4011 × 10−3t – 2.9069 × 10−6t2

Thermal Diffusivity, 
m2/s

Protein
Fat
Carbohydrate
Fiber
Ash

α = 6.8714 × 10−8 + 4.7578 × 10−10t – 1.4646 × 10−12t2

α = 9.8777 × 10−8 – 1.2569 × 10−10t – 3.8286 × 10−14t2

α = 8.0842 × 10−8 + 5.3052 × 10−10t – 2.3218 × 10−12t2

α = 7.3976 × 10−8 + 5.1902 × 10−10t – 2.2202 × 10−12t2

α = 1.2461 × 10−7 + 3.7321 × 10−10t – 1.2244 × 10−12t2

Density,
kg/m3

Protein
Fat
Carbohydrate
Fiber
Ash

ρ = 1.3299 × 103 – 5.1840 × 10−1t
ρ = 9.2559 × 102 – 4.1757 × 10−1t
ρ = 1.5991 × 103 – 3.1046 × 10−1t
ρ = 1.3115 × 103 – 3.6589 × 10−1t
ρ = 2.4238 × 103 – 2.8063 × 10−1t

Specific Heat,
J/(kg·K)

Protein
Fat
Carbohydrate
Fiber
Ash

cp = 2.0082 × 103 + 1.2089t – 1.3129 × 10−3t2

cp = 1.9842 × 103 + 1.4733t – 4.8008 × 10−3t2

cp = 1.5488 × 103 + 1.9625t – 5.9399 × 10−3t2

cp = 1.8459 × 103 + 1.8306t – 4.6509 × 10−3t2

cp = 1.0926 × 103 + 1.8896t – 3.6817 × 10−3t2

aFrom Choi and Okos (1986).

Table 2. Thermal Property Equations for Water and Icea (−40°C ≤ t ≤ 150°C)

Thermal Property Thermal Property Model

Water Thermal Conductivity, W/(m·K)
Thermal Diffusivity, m2/s
Density, kg/m3

Specific Heat, J/(kg·K)b

Specific Heat, J/(kg·K)c

kw = 5.7109 × 10−1 + 1.7625 × 10−3t – 6.7036 × 10−6t2

αw = 1.3168 × 10−7 + 6.2477 × 10−10t – 2.4022 × 10−12t2

ρw = 9.9718 × 102 + 3.1439 × 10−3t – 3.7574 × 10−3t2

cw = 4.0817 × 103 – 5.3062t + 9.9516 × 10−1t2

cw = 4.1762 × 103 – 9.0864 × 10−2t + 5.4731 × 10−3t2

Ice Thermal Conductivity, W/(m·K)
Thermal Diffusivity, m2/s
Density, kg/m3

Specific Heat, J/(kg·K)

kice = 2.2196 – 6.2489 × 10−3t + 1.0154 × 10−4t2

αice = 1.1756 × 10−6 – 6.0833 × 10−9t + 9.5037 × 10−11t2

ρice = 9.1689 × 102 – 1.3071 × 10−1t
cice = 2.0623 × 103 + 6.0769t

aFrom Choi and Okos (1986).
bFor the temperature range of −40°C to 0°C.

cFor the temperature range of 0°C to 150°C.
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temperature to that at which pure ice first begins to crystallize. This initial freezing point is
somewhat lower than the freezing point of pure water due to dissolved substances in the mois-
ture within the food. At the initial freezing point, as a portion of the water within the food
crystallizes, the remaining solution becomes more concentrated. Thus, the freezing point of
the unfrozen portion of the food is further reduced. The temperature continues to decrease as
the separation of ice crystals increases the concentration of the solutes in solution and
depresses the freezing point further. The ice and water fractions in the frozen food depend
upon temperature. Since the thermophysical properties of ice and water are quite different, the
thermophysical properties of the frozen food vary dramatically with temperature.

PREDICTION METHODS

Ice Fraction
The thermophysical properties of frozen foods depend strongly on the fraction of ice within

the food and it is necessary to determine the mass fraction of water that has crystallized. Foods
can be considered to consist of three constituents: water, soluble substances, and insoluble sub-
stances. Below its initial freezing temperature, the item contains ice, unfrozen water, soluble
solids, and insoluble solids. As the temperature decreases further there is an increase in the mass
fraction of ice, wice, and a decrease in the mass fraction of unfrozen water, ww. The mass frac-
tions of ice and water are then related as follows:

(1)

where wwo is the total mass fraction of water.
High moisture content food items have been modeled as ideal dilute solutions (Heldman

1974; Schwartzberg 1976; Chen 1985a, 1987, 1988; Pham 1987; Pham et al. 1994; Murakami
and Okos 1996), assuming that Raoult’s law is valid. The freezing point depression equation is
then given by

(2)

which can be integrated to yield

(3)

where xw is the mole fraction of water in solution, Mw is the molar mass of water, Lo is the latent
heat of fusion of water, R is the ideal gas constant, To is the freezing point of water, and T is the
freezing point of the food.

In addition, the mole fraction of water in solution, xw, is given by

(4)

An effective molar mass Ms for the solids is used since it would be difficult to determine the
actual molar mass of the soluble solids. This effective molar mass is empirically determined
from freezing point data so as to correlate with experimentally determined ice content data.
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By manipulating Equations (1) through (4), the mass fraction of ice within high moisture con-
tent food items is obtained. Chen (1985b) proposed the following model for predicting the mass
fraction of ice in a food item:

(5)

Based upon experimental data, Chen (1985a) developed the following equation for estimating
the effective molar mass of the soluble solids in lean beef and cod muscle:

(6)

where n = 535.4 for lean beef and n = 404.9 for cod muscle. A similar equation was developed
to estimate the effective molar mass of the soluble solids in orange juice and apple juice:

(7)

where n = 200 for both orange juice and apple juice.
Schwartzberg (1976), however, suggested that the effective molar mass of the soluble solids

within the food item can be approximated by

(8)

where wwo is the mass fraction of water in the unfrozen food item and wb is the mass fraction of
“bound water” within the food. Bound water is that portion of the water within a food item
which is bound to solids within the food, and thus is unavailable for freezing. The mass fraction
of bound water may be estimated as follows:

(9)

where wp is the mass fraction of protein in the food item.
By combining Equations (5) and (8), a simple expression for predicting the ice fraction was

developed (Miles 1974):

(10)

Equation (10) underestimates the ice fraction at temperatures near the initial freezing point
and overestimates the ice fraction at lower temperatures. Tchigeov (1979) proposed an empirical
relationship to estimate the mass fraction of ice:

(11)
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Fikiin (1996) notes that Equation (11) is applicable to a wide variety of food items and provides
satisfactory accuracy.

Specific Heat

In unfrozen foods, specific heat is relatively constant with respect to temperature. However,
for frozen foods, there is a large decrease in specific heat capacity as the temperature decreases.
The specific heat capacity of a food item at temperatures above its initial freezing point is
obtained from the mass average of the specific heat capacities of the food components:

(12)

where ci is the specific heat capacity of the individual food components and wi is the mass frac-
tion of the food components. If detailed composition data are not available, a simpler equation
for the specific heat capacity of an unfrozen food item, presented by Chen (1985a), can be used:

(13)

where cu is the specific heat capacity of the unfrozen food item J/(kg·K) and ws is the mass frac-
tion of the solids in the food item.

Below the freezing point the sensible heat due to temperature change and the latent heat due
to the fusion of water are important. Latent heat is released over a range of temperatures, and an
apparent specific heat capacity can be used to account for both the sensible and latent heat
effects. Then, the specific enthalpy of a frozen food can be modeled as the sum of the constitu-
ent enthalphies:

(14)

The apparent specific heat capacity, ca, is given as

(15)

Schwartzberg (1976) assumed that high moisture content food items can be modeled as ideal
dilute solutions and developed the following equation for the apparent specific heat capacity of
high moisture content food items:

(16)

The term ∆c is the difference between the specific heat capacities of water and ice (∆c =
cw – cice), E is the ratio of the molar masses of water, Mw, and food solids, Ms, (E = Mw/Ms),
R is the ideal gas constant, To is the freezing point of water (To = 273.2K), and t is the food tem-
perature (°C).

Schwartzberg (1981) expanded his earlier work and developed an alternative method for
determining the apparent specific heat capacity of a food item below the initial freezing point:
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(17)

Equation (17) has been simplified by Delgado et al. (1990) for the specific heat during thaw-
ing as

(18)

and during freezing as

(19)

where the parameters a′, b′, m′, and n′ are determined via a non-linear least squares fit to empir-
ical calorimetric measurements. Delgado et al. (1990) have determined these parameters for two
cultivars of strawberries.

A slightly simpler apparent specific heat capacity equation, which is similar in form to that of
Schwartzberg (1976), was developed by Chen (1985a) as an expansion of Siebel’s equation
(Siebel 1892) for specific heat capacity:

(20)

If the effective molar mass of the soluble solids is unknown, Equation (8) may be used to esti-
mate the effective molar mass and Equation 20 becomes

(21)

Enthalpy

Above the freezing point, specific enthalpy consists of sensible energy, while below the freez-
ing point, specific enthalpy consists of both sensible and latent energy. Equations for specific
enthalpy may be obtained by integrating expressions of specific heat capacity with respect to
temperature:

(22)

For food items that are at temperatures above their initial freezing point, the specific enthalpy
may be determined by integrating Equation (12) to yield

(23)
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Integration of Chen’s (1985a) specific heat correlation yields

(24)

This equation, however, would predict zero specific enthalpy at the initial freezing point of the
food item. Typically, in the literature for food refrigeration, the reference temperature for zero
specific enthalpy is –40ºC. In order to make Equation (24) consistent with zero specific enthalpy
at –40ºC, an additional term must be added to Equation (24):

(25)

where hf  is the specific enthalpy at the initial freezing point and may be estimated as discussed
in the following section.

For food items that are at temperatures below the initial freezing point, mathematical expres-
sions for specific enthalpy are also obtained by integrating the specific heat equations. Integra-
tion of Equation (16) between a reference temperature, Tr , and the food temperature, T, leads to
the following expression for the specific enthalpy of a frozen food item (Schwartzberg 1976):

(26)

Pham et al. (1994) have rewritten Schwartzberg’s specific enthalpy model, Equation (26), as
follows:

(27)

where the specific heat is

(28)

(29)

and A2 is an integration constant. Pham et al. (1994) have performed experiments to determine
the specific enthalpy of 27 food items for the temperature range –40°C to 40°C and found that
Equation (26) provided a good fit to their experimental data. Thus, they presented their experi-
mental specific enthalpy data in terms of the coefficients A2, cf , and B2, in Equation (27), rather
than in tabular temperature-enthalpy form.

By integrating Equation (20) between a reference temperature, Tr , and the food temperature,
T, Chen (1985a) obtained the following expression for specific enthalpy below the initial freez-
ing point:

(30)
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By substitution of Equation (8) for the effective molar mass of the soluble solids, Ms, Equation
(30) becomes

(31)

Miki and Hayakawa (1996) developed a semi-theoretical equation for the specific enthalpy of
frozen food items that takes the following form:

(32)

where the empirical coefficients A1, B1, and C1 are given as

(33)

(34)

(35)

As an alternative to the specific enthalpy equations developed by integration of specific heat
capacity equations, Chang and Tao (1981) developed empirical correlations for specific
enthalpy. Their correlations are given as functions of water content, initial and final tempera-
tures, and food type (meat, juice, or fruit/vegetable) and have the following form:

(36)

where is a reduced temperature, [  = (T – 227.6)/(Tf – 227.6)], and y and z are correlation
parameters. In the method by Chang and Tao (1981), the reference temperature is –45.6°C
(–50°F), which corresponds to zero specific enthalpy. By performing a regression analysis on
experimental data available in the literature, Chang and Tao developed the following expres-
sions for the correlation parameters, y and z, used in Equation (36) for the meats group, given as

(37)

(38)

and for the fruit, vegetable, and juice group, given as

(39)

(40)

Correlations were also developed for the initial freezing temperature, Tf , for use in Equation
(36) as a function of water content. For the meat group,
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(41)

and for the fruit/vegetable group,

(42)

and for the juice group,

(43)

The specific enthalpy of a food item at its initial freezing point is also required for use in Equa-
tion (36). Chang and Tao (1981) suggest the following correlation for determining the specific
enthalpy of the food item at its initial freezing point:

(44)

Thermal Conductivity
The thermal conductivity of a food item depends upon the composition, structure, and tem-

perature of the food item. Early work in the modeling of the thermal conductivity of foods
includes Eucken’s adaption of Maxwell’s equation (Eucken 1940). This model is based upon the
thermal conductivity of dilute dispersions of small spheres in a continuous phase:

(45)

In an effort to account for the different structural features of foods, Kopelman (1966) devel-
oped thermal conductivity models for both homogeneous and fibrous food items. The differ-
ences in thermal conductivity parallel and perpendicular to the food fibers are taken into
account. For an isotropic, homogeneous two-component system composed of continuous and
discontinuous phases, in which the thermal conductivity is independent of the direction of heat
flow, Kopelman (1966) developed the following expression for thermal conductivity, k:

(46)

In developing Equation (46), it was assumed that the thermal conductivity of the continuous
phase is much larger than the thermal conductivity of the discontinuous phase. However, if the
thermal conductivity of the discontinuous phase is much larger than the thermal conductivity of
the continuous phase, then the following expression is used to calculate the thermal conductivity
of the isotropic mixture:

(47)

For an anisotropic, fibrous two-component system in which the thermal conductivity is
dependent upon the direction of heat flow, Kopelman (1966) developed two expressions for
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thermal conductivity. For heat flow parallel to the food fibers, Kopelman (1966) proposed the
following expression for thermal conductivity, , given as

 (48)

and for heat flow perpendicular to the food fibers where N 2 is the volume fraction of the discon-
tinuous phase in fibrous food product:

(49)

Levy (1981) introduced a modified version of the Eucken-Maxwell equation as follows:

 (50)

where Λ is the thermal conductivity ratio (Λ = k1/k2), k1 is the thermal conductivity of compo-
nent 1, and k2 is the thermal conductivity of component 2. The parameter, F1, introduced by
Levy (1981) is given as

 (51)

where

 (52)

and φ1 is the volume fraction of component 1:

 (53)

When foods consist of more than two distinct phases, the two-component methods for the pre-
diction of thermal conductivity must be applied successively to obtain the thermal conductivity
of the food product. For example, in the case of frozen food, the thermal conductivity of the ice
and liquid water system is calculated first using one of the above mentioned methods. The
resulting thermal conductivity of the ice/water system is then combined successively with the
thermal conductivity predicted for each remaining food constituent to determine the thermal
conductivity of the food product.

For multi-component systems, numerous researchers have proposed the use of parallel and
series thermal conductivity models based upon the analogy with electrical resistance (Murakami
and Okos 1989). The parallel model is simply the sum of the thermal conductivities of the food
constituents multiplied by their volume fractions:
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(54)

where the volume fraction of constituent i is given by

 (55)

The series model is the reciprocal of the sum of the volume fractions divided by their thermal
conductivities:

 (56)

These two models have been found to predict the upper and lower bounds of the thermal conduc-
tivity of most food items. Saravacos and Kostaropoulos (1995) suggest that the parallel structural
model can be used to calculate the thermal conductivity of porous food items including granular,
puffed, or freeze-dried foods, while the series model can be used to calculate the thermal conduc-
tivity of low-porosity food items, including gelatinized starchy foods or high-sugar foods. 

A thermal conductivity model that is intermediate to the series and parallel models can be
obtained from the weighted geometric mean of the constituents as follows (Rahman et al. 1991):

 (57)

Rahman et al. (1997) have noted that the series and parallel thermal conductivity models do
not take into account the natural arrangement of component phases within a food item. They
developed the following model to account for the residual effects of temperature and structure of
a food item:

 (58)

Rahman et al. (1997) experimentally determined the values of α for numerous fruits and vegeta-
bles and correlated them as

 (59)

This model is limited to moisture content between 14% and 88%, porosity between 0.0 and 0.56,
and temperature between 5°C and 100°C.
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COMPARISION OF MODELS AGAINST DATA
The values from the thermophysical property models were compared with an extensive

empirical thermophysical property data set compiled from the literature, shown in Table 3. The
composition data for the food items listed in Table 3 were obtained from the USDA (1996).

The specific enthalpy, apparent specific heat, and ice content with respect to temperature for a
variety of foods have been established by the well-known enthalpy-moisture content-tempera-
ture diagrams from Riedel (1951, 1956, 1957, 1960). Numerous researchers have used these
data to validate their thermophysical property models (Chen 1985a, 1985b, Pham 1987,
Schwartzberg 1976) and these data can also be found in other sources such as ASHRAE (1981),
Charm (1971), and Rolfe (1968).

To obtain the enthalpy-moisture content-
temperature data, Riedel (1951) constructed
an elaborate calorimeter, shown in Figure 1.
The upper portion of the device contains a
conic copper box (K), containing a small food
sample (3 to 5 g), that is brought into close
contact with a copper cylinder (G). The tem-
perature of the copper cylinder is held con-
stant through the use of liquid air (D) and
heating coils (not shown). The upper portion
of the apparatus is contained within a dewar
vessel (B) to ensure that it is thermally insu-
lated from the surroundings. Once the food
sample has reached the desired temperature,
the small conical box containing the food
sample is released into the lower portion of
the calorimeter, which consists of a copper
cylinder (X) in which the conical copper sam-
ple box rests. 

The copper cylinder is surrounded by a
large iron block (Y) that provides a constant
ambient temperature and the lower portion is
insulated by a large dewar vessel (R). Tem-
perature changes of the copper cylinder are
measured with a platinum resistance ther-
mometer (U) and are used to obtain specific
heat and specific enthalpy data. Riedel
(1951) claims that calibration experiments
performed with this calorimeter, using water

as the test substance, yielded specific heat capacity and latent heat of fusion values that agreed
within 0.2% of the best data given in the literature. Additional apparent specific heat data
were obtained from Fleming (1969) using adiabatic calorimeter that agreed within 4% of the
best data given in the literature.

The thermal conductivity data used in this evaluation were obtained from Pham (1990),
who conducted a critical analysis of data available in the literature. The criteria for the selec-
tion of these data included that the product composition (or at least water content) be known,
that there should be no obviously unusual trend that contradicts the majority of other data, and
that the measuring equipment must have been calibrated against a material with a known ther-
mal conductivity value. The thermal conductivity data selected by Pham were originally

Figure 1. Calorimeter from Riedel (1951)
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obtained by either the guarded hot plate method or the line source method. The evaluation by
Pham resulted in the selection of 203 thermal conductivity data points from 11 sources. These
thermal conductivity measurement techniques produced an error of 5% or less with a standard
deviation of 5% or less when tested with substances of known thermal conductivity.

Food composition data in the USDA Nutrient Database for Standard Reference were com-
piled from published and unpublished sources. Published sources include the scientific and tech-
nical literature while the unpublished data are from the food industry, other government
agencies and research conducted under contracts initiated by the Agricultural Research Service
(ARS) (USDA 1999). Protein content was calculated from the level of total nitrogen in the food,
using conversion factors recommended by Jones (1941). Fat content was determined by gravi-
metric methods, including extraction methods that employ ether or a mixed solvent system con-
sisting of chloroform and methanol, or acid hydrolysis. Carbohydrate content was determined as
the difference between 100% and the sum of the percentages of water, protein, fat, and ash
(USDA 1999). Although the analysis of error associated with the measurement of the composi-
tion data reported by the USDA is not complete, when such analysis is available, the error in the
amount of each food constituent is generally less than 10%.

Tables 4 through 7 summarize the statistical analyses that were performed on the thermo-
physical property models discussed in this paper. For each of the models, the average absolute

Table 3. Empirical Thermophysical Property Data Set

Thermal
Property

No. of Data 
Points Material Reference

Ice Fraction 13 Orange Juice (wwo = 0.89) Riedel (1951)

14 Lean Beef (wwo = 0.74) Riedel (1957), Rolfe (1968)

14 Cod Muscle (wwo = 0.82) Riedel (1960), Rolfe (1968)

Apparent Specific Heat Capacity 10 Cod Muscle (wwo = 0.82) Riedel (1956)

10 Lean Beef (wwo = 0.82) Riedel (1957)

7 Lamb Kidneys (wwo = 0.798) Fleming (1969)

7 Lean Lamb Loin (wwo = 0.649) Fleming (1969)

7 Moderately Fatty Lamb Loin 
(wwo = 0.525)

Fleming (1969)

7 Fatty Lamb Loin (wwo = 0.444) Fleming (1969)

7 Veal (wwo = 0.775) Fleming (1969)

Specific Enthalpy 5 Apple Juice (wwo = 0.872) Riedel (1951)

5 Orange Juice (wwo = 0.89) Riedel (1951)

16 Cod (wwo = 0.80) Riedel (1956)

16 Haddock (wwo = 0.84) Riedel (1956)

16 Perch (wwo = 0.79) Riedel (1956)

18 Lean Beef (wwo = 0.74) Riedel (1957)

16 Cod Muscle (wwo = 0.82) Riedel (1960)

Thermal Conductivity 32 Beef Pham (1990)

8 Fish Pham (1990)

20 Lamb Pham (1990)

9 Poultry Pham (1990)
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prediction error (%), the standard deviation (%), the 95% confidence range of the mean (%), the
kurtosis, and the skewness are presented.

Ice Fraction
As shown in Table 4, the method by Chen (1985b) for calculating ice fraction, in conjunction

with the empirical correlations by Chen (1985a) for effective molar mass, Equations (6) and (7),
produced an average absolute prediction error of 4.04%, with a 95% confidence range of
±3.00%, as shown in Table 4. In addition, the distribution of prediction errors was sharply
peaked around the average absolute prediction error as evidenced by the large, positive value for
the kurtosis, 31.2. The method by Chen (1985a) predicted ice fractions for beef and orange juice
very well, producing average absolute prediction errors of less than 1.8%. The average absolute
prediction error for the fish data set was considerably larger, 8.2%.

Using Equation (8) (Schwartzberg 1976) to approximate effective molar mass reduces the
method by Chen (1985a) to that reported by Miles (1974). Thus, when using Equation (8) for
effective molar mass, both the method by Chen and Miles’ method produce identical results
with a large average absolute prediction error of 10.6% and a 95% confidence range of ±7.45%.
The average absolute prediction errors for these two methods ranged from 4.5% for the beef data
set to 20% for the orange juice data.

The ice fraction equation of Tchigeov (1979) produced an average absolute prediction error
of 4.75% with a 95% confidence range of ±2.89%. In addition, the distribution of prediction
errors was sharply peaked around the average absolute prediction error as evidenced by the
large, positive value for the kurtosis, 12.7. Tchigeov’s equation performed consistently for all
the food types tested. Best results were with the fish data set, producing an average absolute pre-
diction error of 2.3%. The average absolute prediction error for the beef data set was 5.3% while
for the orange juice data set, the average absolute prediction error was 7.1%.

Both Chen’s method and Tchigeov’s equation underestimated the ice fraction, and the error
tended to decrease as the temperature of the food item decreased. The maximum error occurred
near the initial freezing point of the food item. The method of Miles (1974) exhibited uniform
error as a function of temperature.

The performance of both the ice fraction method by Chen (1985b) and the simple ice fraction
equation reported by Miles (1974) validate the primary assumption upon which these models
were derived, namely, that high moisture content food items can be considered to behave as
ideal dilute solutions. Thus, these methods would be expected to produce acceptable results for
foods of high moisture content.

Specific Heat
As shown in Table 5, the three apparent specific heat models produced large average absolute

prediction errors along with large prediction variations. All the models produced relatively small

Table 4. Statistical Analysis of Ice Fraction Models

Prediction Method

Average Absolute 
Prediction
Error, %

Standard 
Deviation, %

95% 
Confidence 
Range, % Kurtosis Skewness

Chen (1985a)a 4.04 8.86 ±3.00 31.2 5.44
Chen (1985b)b 10.6 7.45 ±2.52 –1.32 0.639
Miles (1974) 10.5 7.43 ±2.51 –1.32 0.653
Tchigeov (1979) 4.75 8.55 ±2.89 12.7 3.60
aIce fraction model of Chen (1985a) using Equations (6) and (7) to calculate molar mass.
bIce fraction model of Chen (1985b) using Equation (8) to calculate molar mass.
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prediction errors for the fish and beef data sets and very large prediction errors for the lamb and
veal data sets. The two models by Schwartzberg (1976, 1981) performed similarly, exhibiting
average absolute prediction errors of approximately 20% with large standard deviations of
approximately 25%. Their best performance was obtained with the fish data set, resulting in
average absolute prediction errors of 10%, while their worst agreement was obtained with the
veal data set, producing average absolute prediction errors of 24%. The method by Chen (1985a)
produced a slightly larger average absolute prediction error of 20.5% with a standard deviation
of 25.6%. The method by Chen performed best with the fish data set, producing an average
absolute prediction error of 6.9% and worst with the veal data set, yielding an average absolute
prediction error of 27%.

All of the apparent specific heat models exhibited large variations in prediction error, and the
absolute value of the prediction error decreased as the temperature decreased. The maximum
errors tended to occur near the initial freezing point of the food item.

Enthalpy
The specific enthalpy equation developed by Chen (1985a) produced an average absolute pre-

diction error of 5.09% along with a standard deviation of 3.98%, as shown in Table 6. The aver-
age absolute prediction errors for the method by Chen method (1985b) ranged from 4.2% for the
fish data set to 15% for the orange juice data set. On average, the method by Chen (1985b)
tended to underpredict the specific enthalpy of foods.

The specific enthalpy equation developed by Miki and Hayakawa (1996) produced an abso-
lute average prediction error of 5.86% and exhibited more consistency for all the food types
tested as compared with the equation by Chen (1985a). For example, the specific enthalpy equa-
tion by Chen produced a very large absolute average prediction error for the orange juice data
set of 15%, while the Miki and Hayakawa method predicted the orange juice data very well, pro-
ducing an average absolute prediction error of 1.3%. The method of Miki and Hayakawa tended
to underpredict slightly the specific enthalpy for orange juice and overpredict the specific
enthalpy for all other food types tested.

The average absolute prediction error of the empirical specific enthalpy equation by Chang
and Tao (1981) was found to be 7.56% and the spread of the absolute prediction errors was
large, as evidenced by the relatively large standard deviation of 6.61%. The equation by Chang
and Tao performed consistently for all the data sets tested.

The specific enthalpy model presented by Schwartzberg (1976) produced an average absolute
prediction error of 6.48% with a moderate standard deviation of 4.64%. The model by
Schwartzberg (1976) model performed consistently, with average absolute prediction errors
ranging from 2.6% for the orange juice data set to 7.0% for the fish data set.

The specific enthalpy equation by Chen (1985a) produced its greatest errors near the initial
freezing point and the error was reduced as the temperature decreased. The specific enthalpy
equation by Miki and Hayakawa (1996) produced the greatest errors just below the initial freez-
ing point and near –30°C. The Schwartzberg (1976) specific enthalpy model tended to underes-
timate near the initial freezing point and near –40°C and overestimated temperatures between

Table 5. Statistical Analysis of Apparent Specific Heat Capacity Models

Estimation Method

Average Absolute 
Prediction
Error, %

Standard 
Deviation, %

95% 
Confidence 
Range, % Kurtosis Skewness

Chen (1985a) 20.5 25.6 ±6.93 23.0 4.19
Schwartzberg (1976) 19.3 25.4 ±6.87 24.6 4.39
Schwartzberg (1981) 19.7 25.1 ±6.80 25.5 4.51
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–40°C and the initial freezing point. The equation of Chang and Tao (1981), however, overesti-
mated near the initial freezing point and near –40°C, while underpredicting at temperatures
between –40°C and the initial freezing point.

The specific enthalpy equation by Chen (1985a) produced good results for apple juice, fish,
and beef, but large prediction errors for orange juice. The specific enthalpy equation of Miki and
Hayakawa (1996) agreed well for both apple juice and orange juice and produced good results
for the fish and beef data sets. The model by Schwartzberg (1976) performed very well for both
apple and orange juice. It also produced good results for the beef and fish data sets. The equation
of Chang and Tao (1981) produced good results for apple juice and performed adequately for
fish, beef, and orange juice.

The good agreement for the specific enthalpy models of Chen (1985a), Miki and Hayakawa
(1996), and Schwartzberg (1976) validates the primary assumption upon which these models
were derived, namely, that high moisture content food items can be considered to behave as
ideal dilute solutions. Thus, these models would be expected to produce acceptable results for
foods of high moisture content. The empirical specific enthalpy equation of Chang and Tao
(1981) is based upon correlations developed from the analysis of data collected on high moisture
content foods, and thus, it too would be expected to produce acceptable results for foods of high
moisture content (wwo ≥ 0.70).

Thermal Conductivity
As shown in Table 7, the thermal conductivity model developed by Levy (1981) produced an

average absolute prediction error of 6.86% and a standard deviation of 4.89%. The average
absolute prediction errors for the method by Levy (1981) ranged from 4.4% for the lamb data set
to 9.5% for the poultry data set. The model by Levy produced good results for the lamb, beef,
and fish data sets.

The Kopelman (1966) isotropic model produced an average absolute prediction error of
8.08% with a 95% confidence range of ±1.47%, and this model performed consistently for all
data sets except for poultry. For the poultry data set, the Kopelman (1966) isotropic model
exhibited an average absolute prediction error of 12.6% while for the rest of the data sets, the
model produced average absolute prediction errors of 8.3% or less.

The Kopelman (1966) perpendicular model produced an average absolute prediction error of
8.98% with a 95% confidence range of ±1.42%. Similar to the isotropic model, the perpendicu-
lar model performed consistently for all data sets except poultry. Thermal conductivity was
underpredicted by 4.3% on average for the poultry data set, while overpredicting by no more
than 8.5% for the rest of the data sets.

The Eucken-Maxwell (1940) model and the Kopelman (1966) parallel model performed simi-
larly overall and these two models achieved their best results with the poultry data set. The abso-
lute average prediction error for the poultry data set for both these models was 10%. Overall, the
Eucken-Maxwell (1940) model and the Kopelman (1966) parallel model produced average
absolute prediction errors of approximately 16% with a 95% confidence range of ±2.5%.

Table 6. Statistical Analysis of Specific Enthalpy Models

Estimation Method

Average Absolute 
Prediction
Error, %

Standard 
Deviation, %

95% 
Confidence 
Range, % Kurtosis Skewness

Chen (1985a) 5.09 3.98 ±0.828 4.85 1.83
Chang and Tao (1981) 7.56 6.61 ±1.38 0.813 1.11
Miki and Hayakawa (1996) 5.86 3.03 ±0.632 –0.232 –0.0511
Schwartzberg (1976) 6.48 4.64 ±0.966 2.30 1.10
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The parallel and series models produced very large average prediction errors. The parallel
model overpredicted thermal conductivity for all foods tested and yielded an average absolute
prediction error of 21.7%, while the series model underpredicted thermal conductivity with an
average absolute prediction error of 33.9%. The spread of predictions was also quite large, with
standard deviations of 13.6% and 20.3%, respectively. The large prediction errors for these
models may be attributed to the fact that the direction of heat flow is not necessarily oriented
with respect to the food fibers as assumed.

The Levy (1981) model and Kopelman (1996) isotropic model both tended to predict the ther-
mal conductivity of frozen foods with less error than that of unfrozen foods. The remaining
models, however, predicted unfrozen food thermal conductivity with less error than that of fro-
zen food thermal conductivity.

CONCLUSIONS

A quantitative evaluation of selected composition-based, thermophysical property models for
high moisture content foods is presented. The performance of each of the models was deter-
mined by comparing calculated results with a comprehensive empirical thermophysical property
data set compiled from the literature.

For ice fraction prediction, the method by Chen (1985b) performed the best against all the
food types tested. However, the method incorporates an empirical estimate for molar mass,
which, at the current time, is limited to beef, cod, apple juice, and orange juice. Further develop-
ment is required to extend the applicability of the method by Chen (1985) to other foods. For all
the food types tested, the equation of Tchigeov (1979) performed nearly as well as the method
by Chen (1985a) and has the added benefit of being easy to implement. The ice fraction equation
of Miles (1974) produced the largest prediction errors.

The three apparent specific heat equations (Chen 1985a, Schwartzberg 1976, 1981) per-
formed similarly, producing large average absolute prediction errors of approximately 20% and
large prediction variations. Of the three equations tested, the Schwartzberg (1976) model
yielded a slightly lower average absolute prediction error than the other two. The implementa-
tion of the Schwartzberg (1981) model could be difficult because it relies on values for the spe-
cific heat capacity of a fully frozen food item, which may not be readily available. Of the three
equations tested, the equation of Chen (1985a) is the easiest to use, although it produced the
largest average absolute prediction error.

The specific enthalpy equation of Chen (1985a) performed the best, while the relations of
Miki and Hayakawa (1996) were nearly as good. These latter two methods are easy to imple-
ment. The performance of the specific enthalpy equations of Schwartzberg (1976) and Chang
and Tao (1981) had greater error.

Table 7. Statistical Analysis of Thermal Conductivity Models

Prediction Method

Average Absolute 
Prediction
Error, %

Standard 
Deviation, %

95% 
Confidence 
Range, % Kurtosis Skewness

Eucken-Maxwell (1940) 16.0 10.6 ±2.55 –0.751 0.551
Kopelman Isotropic (1966) 8.08 6.12 ±1.47 –0.687 0.604
Kopelman Parallel (1966) 16.4 10.4 ±2.49 –0.690 0.516
Kopelman Perpendicular (1966) 8.98 5.90 ±1.42 –0.117 0.564
Levy (1981) 6.86 4.98 ±1.20 0.633 1.00
Parallel 21.7 13.6 ±3.26 –0.900 0.354
Series 33.9 20.3 ±4.87 –1.61 –0.0561
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The thermal conductivity model of Levy (1981) exhibited the lowest average absolute pre-
diction error. The Kopelman (1966) isotropic and perpendicular thermal conductivity models
exhibited poorer agreement, but are less cumbersome to implement. The Kopelman parallel
model (1966) and the Eucken-Maxwell model (1940) produced large overprediction errors, of
16% on average. The parallel and series electrical-resistance-analogy thermal conductivity
models produced the largest prediction errors, with the parallel model overpredicting by 21%
and the series model underpredicting by 34%.

In summary, for ice fraction prediction, the equation of Chen (1985b) performed best, fol-
lowed closely by Tchigeov’s (1979). For apparent specific heat, the model of Schwartzberg
(1976) performed best, and for specific enthalpy prediction, the Chen (1985a) equation gave the
best results, followed closely by Miki and Hayakawa (1996). Finally, for thermal conductivity,
the Levy (1981) model performed best.
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NOMENCLATURE
a parameter in Equation (45): a = 3kc /(2kc + kd)
a′ parameter in Equation (18)
A1 parameter given by Equation (32), J(K/kg)
A2 parameter in Equation (27)
b parameter in Equation (45): b = Vd /(Vc + Vd)
b′ parameter in Equation (18)
B1 parameter given by Equation (32), J/kg
B2 parameter in Equation (27)
ca apparent specific heat capacity, J/(kg·K)
cf specific heat capacity of fully frozen food, 

J/(kg·K)
ci specific heat capacity of ith food component, 

J/(kg·K)
cice specific heat capacity of ice, J/(kg·K)
cp constant pressure specific heat capacity, 

J/(kg·K)
cs specific heat capacity of food solids, J/(kg·K)
cu specific heat capacity of unfrozen food, 

J/(kg·K)
cw specific heat capacity of water, J/(kg·K)
C1 parameter given by Equation (32), J/(kg·K)
E ratio of the molar masses of water and solids: 

E = Mw /Ms
F1 parameter given by Equation (51)
h specific enthalpy, J/kg
hf specific enthalpy at initial freezing tempera-

ture, J/kg
hi specific enthalpy of the ith food component,

J/kg
hice specific enthalpy of ice, J/kg
hs specific enthalpy of food solids, J/kg
hw specific enthalpy of water, J/kg
k thermal conductivity, W/(m·K)
k1 thermal conductivity of component 1, 

W/(m·K)
k2 thermal conductivity of component 2, 

W/(m·K)
ka thermal conductivity of air, W/(m·K)
kc thermal conductivity of continuous phase, 

W/(m·K)
kd thermal conductivity of discontinuous phase, 

W/(m·K)
ki thermal conductivity of the ith component, 

W/(m·K)
ks thermal conductivity of food solids, W/(m·K)
(kw)r thermal conductivity of water at the reference 

temperature, Tr, W/(m·K)
thermal conductivity with heat flow parallel to 
food fibers, W/(m·K)

k⊥ thermal conductivity with heat flow perpen-
dicular to food fibers, W/(m·K)

L3 volume fraction of discontinuous phase
Lo latent heat of fusion of water at 0°C; 

Lo = 333 600 J/kg
m′ parameter in Equation (19)
M parameter in Equation (47): 

M = L2(1 − kd /kc)
Ms effective molar mass of food solids 

(kg/mol)
Mw molar mass of water (kg/mol)
n parameter in Equations (6) and (7)
n′ parameter in Equation (19)
N2 volume fraction of discontinuous phase
P parameter in Equation (49): P = N(1 − kd /kc )

k
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R ideal gas constant: R = 8.314 J/(mol·K)
t food temperature, °C
tf initial freezing temperature of food, °C
tr reference temperature, °C
T food temperature, K
Tf initial freezing point of food item, K
To freezing point of water: To = 273.2 K
Tr reference temperature, K

reduced temperature
Vc volume of continuous phase, m3

Vd volume of discontinuous phase, m3

w1 mass fraction of component 1
wb mass fraction of bound water
wi mass fraction of ith food component
wice mass fraction of ice
wp mass fraction of protein
ws mass fraction of solids
wso mass fraction of soluble substances

T

wu mass fraction of insoluble substances
ww mass fraction of unfrozen water
wwo mass fraction of water in unfrozen food
xw mole fraction of water in solution
y correlation parameter in Equation (36)
z correlation parameter in Equation (36)
α Rahman-Chen structural factor
∆c difference in specific heat capacities of water 

and ice; ∆c = cw − cice, J/(kg·K)
φ1 volume fraction of component 1
φa volume fraction of air within food item
φi volume fraction ith food component
φw volume fraction of water within food item
Λ thermal conductivity ratio; Λ = k1/k2
ρ1 density of component 1, kg/m3

ρ2 density of component 2, kg/m3

ρi density of ith food component, kg/m3

σ parameter given by Equation (52)
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