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The development of genome sequencing and DNA microarray analysis of gene expression 
gives rise to the demand for data-mining tools.  BioProspector, a C program using a Gibbs 
sampling strategy, examines the upstream region of genes in the same gene expression pattern 
group and looks for regulatory sequence motifs.  BioProspector uses zero to third-order 
Markov background models whose parameters are either given by the user or estimated from a 
specified sequence file.  The significance of each motif found is judged based on a motif score 
distribution estimated by a Monte Carlo method.  In addition, BioProspector modifies the 
motif model used in the earlier Gibbs samplers to allow for the modeling of gapped motifs and 
motifs with palindromic patterns.  All these modifications greatly improve the performance of 
the program.  Although testing and development are still in progress, the program has shown 
preliminary success in finding the binding motifs for Saccharomyces cerevisiae RAP1, 
Bacillus subtilis RNA polymerase, and Escherichia coli CRP.  We are currently working on 
combining BioProspector with a clustering program to explore gene expression networks and 
regulatory mechanisms.  For a copy of the program and documentation for UNIX systems, 
please contact xliu@smi.stanford.edu. 

1   Introduction 

Over the last ten years, genomic sequencing has started in over 600 organisms, and 
more than 50 complete genomes are publicly available.  The DNA microarray 
technology permits the measurement of gene expression in cultured cells1.  An 
increasing number of laboratories are using the combination of these two methods to 
study gene expression on a genomic scale.  After all the genes from an organism are 
clustered based on their expression patterns2, an important next step is to examine 
the upstream region of genes in the same expression pattern group and look for 
sequence motifs.  These motifs might be the regulatory signal (most likely a 
transcriptional regulatory site) that causes these genes to respond similarly to 
developmental or environmental changes.  Information on expressions, regulatory 



  

motifs and functions provides substantial insight to the understanding of gene 
networks3.  The motivation of this research is to provide a gene expression data 
analysis tool   to look for regulatory sequence motifs in the upstream region of 
genes in the same expression group.  

There are generally two strategies for DNA sequence motif finding that are 
explored in recent years – using enumeration to check the over-representation of all 
possible w-mers and using iterative processes to update a motif probability matrix.  
The second strategy calculates the expected frequency of each possible motif of 
width w based on background or input sequence distribution4, then searches for w-
mers that are much more abundant in the input than expected5, 6.  This method is 
guaranteed to find motifs with the greatest z-scores, but it does not allow flexible 
substitutions in the matching segments.  Also, the motifs that could be enumerated 
are limited in size (≤ 7 bases long).  The third strategy employs a probability matrix 
for the motif, specifying the probability of each base at each motif position.  An 
iterative procedure, implementing either an expectation maximization (EM)7 or a 
Gibbs sampling8 algorithm, is then applied to improve the matrix until convergence.  
In recent years, many modifications have been made on this methodology9, 10.  
Workman and Stormo11 even tried motif finding using artificial neural network with 
alignment methods closely related to EM and Gibbs sampling.  Our method also 
adopts the Gibbs sampling approach, with added improvements in flexibility and 
sensitivity. 

The improvements start with a better understanding of the dataset to be 
investigated.  Since there may be more than one transcriptional mechanism involved 
within each group of sequences, some sequences in the input may have no copies of 
a motif while others may have multiple copies.  Although this was addressed in the 
motif sampler by a mixture model12, we used a different approach, called the 
threshold sampler, which is less susceptive to non-independence among input 
sequences.  In some cases, simultaneous and proximal binding of two transcriptional 
factors or the binding of a homodimer may be required to initiate transcription.  
Therefore, considering the two binding blocks together may increase the signal 
strength.  In addition, to better capture the characteristics of local DNA environment 
and structure, a Markov model for the background could be adopted which looks at 
successive duplet or triplet base pairs at a time13.  Since the direction of transcription 
regulation is unknown, we need to check both forward and complementary strands 
of the input sequences.  Finally, Gibbs sampling may report different motifs at 
different runs, so it is important to know the statistical significance of a reported 
motif.   
 
 



 

2.   Algorithm 

2.1  Basic model 

BioProspector is an algorithm for finding sequence motifs from a set of DNA 
sequences (Fig. 1).  It takes the following input parameters:  

- A file (Fin) with N DNA sequences in which the motifs are to be found. 
- A file (Fbg) containing sequences or probabilities characterizing the background 

nucleotide distribution. 
- The widths of the two motif blocks w1 and w2, and their gap range, [gL, gM].  In 

the case when a one-block motif is of interest, one can set w2, gL and gM to 0.  
- Whether each sequence has at least one copy of the motif. 
- Whether the motif could occur in both DNA strands. 
- Whether the motif has a palindromic pattern, in which case w1 must be equal to 

w2, and BioProspector checks both DNA strands automatically.  
At the end, BioProspector outputs the following results:  

- The motif score, significance value, and the number of aligned segments.  
- A regular expression of the motif consensus and degenerate, as well as a 

probability matrix expression of the motif. 
- The number of segments each input sequence contributes to the motif, the 

starting position and sequence of each segment.  
Within each run of BioProspector, a process called threshold sampler is performed a 
number of times.  Threshold sampler adopts the Gibbs sampling strategy, which 
initializes a motif probability matrix Θ by a random alignment of the input 
sequences and improves the matrix iteratively and stochastically by a predictive 
update method8.  The predictive update formula used here, however, is based on the 
following important modifications of the underlying statistical model.  
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In the original Gibbs sampler8, every possible segment of width w within a randomly 
chosen sequence s (in Fin) is considered.  A score Ax = Qx / Px is computed and a 
new alignment position as is sampled with probability proportional to Ax.  Here Qx 
and Px are the probability of generating segment x from the current motif matrix Θ 
and from the independent background model β, respectively.  In DNA, however, the 
presence of a particular nucleotide usually has influence on its neighboring 
positions, so a better way to evaluate Px is based on Markov background.  For 
example, the probability of generating segment ATGTA from a third-order Markov 
background model β is calculated as:  

P3
ATGTA = p(A) × p(T | previous base is A) × p(G | previous 2 bases are AT) × 

        p(T | previous 3 base are ATG) × p(A | previous 3 bases are TGT) 

BioProspector allows the user to specify one of the following two background 
file formats: 

- A sequence file containing background sequences from which β is to be 
computed (it could be the same as the input sequence file Fin). 

- A file with pre-computed background probabilities characterizing the complete 
genome (intergenic, ORF's, or the sum) of an organism (defaults to yeast).  
In the first case, since Markov dependency order of f requires the estimate of    

3 × 4f parameters, the program picks f (≤ 3) so that the background sequences has 
about 1024 × 4f bases.  In the second case, a third-order Markov background model 
is automatically used because of the sufficient size of a genome. 

2.3  Sampling new alignments with two score thresholds 

In the original Gibbs sampler8, a new motif alignment for a particular sequence s is 
chosen with probability proportional to Ax.  However, this relies on the fact that each 
sequence contains a single copy of the motif.  To deal with the problem that some 
input sequences contain no copies of the motif and some contain many copies, two 
thresholds, TH and TL, are introduced to the threshold sampler.  During the sampling 
step, all the non-overlapping segments of sequence s with a score higher than TH are 
automatically added to the motif, and their positions are added to the alignment as.  
For the rest of the segments in s with scores between [TL, TH], one segment will be 
chosen with probability proportional to Ax−TL.  The high threshold TH is chosen, 
based on a large deviation argument, to be proportional to the product of the average 
length of the input sequences and the motif width w.  TL is fixed at 0 for the first 10 
iterations, and is linearly increased until it reaches TH  / 8 at the end of the procedure.  
If the user requests the program to search for motifs in both strands, the two strands 
are considered as one sequence with only one segment sampled to the motif.  The 



  

final alignment consists of all the segments with scores above TH and the highest 
scoring segment between [TL, TH] within each sequence.  

Sampling only among segments with scores between [TL, TH] helps the program 
converge more quickly.  When the motif is near convergence, a sequence with 
multiple copies of the motif will have multiple segments above TH, thus having all of 
the copies added to the motif.  If a sequence does not have any segment with a score 
higher than TL, it is considered as not containing the motif and no segment is 
sampled to the motif.  In the case when the user specifies that each input sequence 
has at least one copy of the motif but a particular sequence has no segment with 
score above TL, we sample a single segment in this sequence with probability 
proportional to Ax. 

2.4  Finding two-block and palindromic motifs 

For motifs with two blocks, BioProspector uses two probability matrices Θ1 and Θ2 
to capture the two blocks.  The matrices are initialized by randomly choosing the 
alignment positions (as1, as2) on the same strand from each sequence with a fixed 
gap g0 = (gL + gM)/2.  Two segments x1 of width w1 and x2 of width w2 within the gap 
range are scored as: Ax1,x2 = (Qx1 /Px1) × (Qx2 /Px2), in which Qx1 is the probability of 
generating x1 by Θ1 and Qx2 is the probability of generating x2 by Θ2.  We sample x1 
from its marginal distribution, which is proportional to Ax1,* = Σx2 Ax1,x2, where the 
sum is over all segments of width w2 within [gL, gM] downstream from x1.  Then 
segment x2 is chosen with probability Ax1,x2  /Ax1,* conditioned on x1. 

When the two motif blocks are palindromic, we need only one motif probability 
matrix Θ.  Each aligned sequence contributes two segments to the same matrix, one 
from each DNA strand. 

2.5  Using motif score distribution to measure goodness of a motif  

Kullback-Leibler information, also known as relative entropy, has been used to 
measure information content of a motif14.  However, when motif1 has 150 aligned 
segments whereas motif2 has only 3, motif2 can easily have better relative entropy 
although the former represents a more interesting and significant conserved motif.  
To resolve this dilemma, we introduce the following criterion to measure the 
goodness of a motif: 
 
 
 

Motif Score = #seg × exp{[Σall positions i Σall nucleotides j qi,j × log(qi,j /pj)] / w} 



  

in which #seg is the number of aligned segments in the motif, qi,j is the probability of 
observing nucleotide j at position i of the motif matrix Θ, and pj is the probability of 
observing nucleotide j from the background probabilities β. 

To see how significant an observed motif score is, we first use Monte Carlo 
simulations to estimate the null distribution of this score.  More precisely, the 
program generates M independent and identically distributed sequence sets under 
the input sequence probability model, where each generated set is identical to the 
input file Fin in sequence number and length.  For each generated sequence set, a 
number of threshold sampler runs are performed, and the highest motif score is 
recorded.  A normal distribution is then fitted to the M recorded scores.  With this 
score distribution, BioProspector runs the original sequence through the threshold 
sampler, and reports motifs that are z (defaults to 5) standard deviations above the 
motif score distribution mean. 
 

3   Method 

BioProspector is developed in C and runs on all UNIX systems.  Currently, it takes 
about 20 seconds on a 400 MHz Sun station to finish a run of threshold sampler on a 
60-sequence data set with an average sequence length of 800 bases.   

We used Bioprospector to test three sets of data.  The first set consists of 60 
non-coding sequences that were shown to physically interact with the 
Saccharomyces cerevisiae telomere-binding protein Rap1p.  DNA associated with 
Rap1p were identified by chromatin immunoprecipitation (IP) and purification of 
DNA fragments enriched by the IP, followed by labeling and hybridization of 
purified fragments to DNA microarrays containing all of the yeast intergenic 
regions.  The binding site for RAP1 is well characterized, and although published 
determinations differ slightly in length and consensus, they all agree on the core site 
RMAYCCR3, 16, 17, 18, 19. The sequences analyzed ranged in length from 163 to 1339 
base-pairs, and some do not contain the RAP1-binding motif, while others contained 
multiple copies of it.  Three runs of BioProspector were performed, using the input 
sequence, a zero-order, and a third-order Markov model estimated from the yeast 
intergenic region to represent the background, respectively.  For each sequence, both 
the forward and complementary strands were examined.  We chose M = 200 for an 
accurate approximation of the motif score distribution, although M = 40 usually 
gives a reasonable estimate.  To examine the performance of threshold sampler on 
the original data, we let it run 250 times and recorded the motif score and consensus 
of each. 



  

 
 
Figure 2. Motif scores of the RAP1-binding data.  The top, middle and bottom plots show the motif 
score distribution using input sequence Fin, a zero-order, and a third-order Markov model estimated from 
yeast intergenic region as the background, respectively.  Within each plot, the dotted line (with ‘o’ 
markers) represents the motif score distribution of the 200 generated sequence sets and each dotted line 
approximates a normal distribution; the dashed line (with ‘*’ markers) and solid line (with ‘+’ markers) 
represent score distribution of the 250 motifs found from original input sequences, in which the dashed 
line represents the false positive motif scores and the solid line represents the true positive motif scores.  
With a third-order Markov background model estimated from yeast intergenic region, all the motifs with 
a score above 305 are correct.  



  

The second data set contains 136 σA-dependent promoter sequences (mostly at 
positions [-100, 15]) from Bacillus subtilis20.  Each sequence has one RNA 
polymerase-binding motif on the forward strand, otherwise known as the TATA 
box.  This is a two-block motif: the first block with consensus TTGACA mostly 
occurs at position –35, and the second block with consensus TATAAT mostly 
occurs at position –12.  BioProspector performed motif finding on this data with a 
specified gap range of [15, 20]. 

The third data set consists of 18 Escherichia coli sequences of length 105 which 
are known to contain CRP-binding sites.  CRP is a prokaryotic dimeric DNA-
binding protein that binds to adjacent DNA major grooves in a palindromic pattern.  
One-block motif models using both EM7 or Gibbs sampling21 have been applied to 
this data and yielded satisfactory results, although both mispredicted one or two 
sites.  We ran BioProspector on this data to search for a palindromic two-block 
motif.  Since the first and last (22) positions of the binding site are not 
complementary (i.e., not a palindromic match), the parameters were specified to be 
w1 = w2 = 8 with a gap range of [1, 4].  
 

4   Result 

4.1  RAP1 site: background Markov dependency and motif score distribution 

The 200 motif scores obtained from the 200 generated sequence sets were 
approximated by a normal distribution, no matter how the background model β was 
estimated (Fig. 2).  When using the background model estimated from Fin, none of 
the reported motifs agree with the published RAP1 consensus.  When using an 
independent background model estimated from yeast intergenic region, most of the 
high-scoring motifs are correct, although there are some high-scoring false positive 
motifs.  When using a third-order Markov background model estimated from yeast 
intergenic region, the distributions of true positive and false positive motifs separate 
very well.  At scores above 305, all the 9 motifs reported contain a consensus of 
ACACCCA which agrees with the published result.  

4.2  TATA-box: two-block motifs 

Among the 136 B. subtilis sequences containing the two-block TATA-box motif, 
BioProspector correctly found 70% of the sites and accurately identified the motif 
consensus as TTGACA, TATAAT.  This motif is not very well conserved; many of 
the missed sites are significantly different from the consensus.  For example, the 



  

following four missed sites are so variable that the sites predicted by BioProspector 
match with the consensus better: 

Correct site Site found

 ald AAGAAT TACACT TTTCCA TAAAAA

cspB TTGTTT TGGAGT ATTACT TATTTT

menE AATACA GATGAT TTGAGA TCTTTT

odhA TTGTGA CAAATT TTTACT TAGAAT

For the following 3 sequences, besides finding the correct sites, BioProspector 
also found a second site closely matching the consensus.  In fact, the second site of 
sequence veg matches exactly with the TATA-box consensus, which is even better 
than the correct site. 

Correct site Second site

 abrB TTGACG TAGTCT CTGACT TACAAT

veg TTGACA TACAAT TTGACA TATAAT

 φ105 TTTACA TACAAT TTGACG TACAAT 

4.3  CRP site: palindrome motifs 

The gold standard of this test is based on footprint experiments which identified 24 
CRP-binding sites in the 18 sequences.  However, the aligned segments are not very 
conserved, especially at the ending positions.  Expectation maximization and Gibbs 
sampling with one-block motif model succeeded in finding most of the sites, 
although both mispredicted one or two sites (Table 1).  With a two-block 
palindromic motif model, all the sites found by BioProspector are correct.  The base 
shifts of the starting position of the first block were caused by our specification of a 
shorter block width and a flexible gap between the two blocks.  The resulting 
probability matrix shows a much more conserved motif with a consensus of 
WTGTGAWM. 
 

5   Discussion 

As we have shown with the RAP1 binding motif data, using different background 
models can greatly influence the performance of BioProspector.  We tried this 
dataset on a couple of web servers that implement Gibbs sampling, neither of which 
allow the user to choose different background models, and we failed to find the 



  

correct RAP1-binding motif.  Furthermore, it is sometimes helpful to estimate the 
background model from a set containing “contrasting” sequences.  For example, the 
background file may contain sequences with a very popular motif A; whereas the 
input file Fin contains sequences with not only motif A, but also a less popular motif 
B.  In this case, BioProspector would be able to find motif B. 

In the RAP1 experiment, many of the high-scoring false positive motifs agree 
with a motif of consensus CTTACCCTAC.  In fact, this motif is the highest scoring 
motif using zero-order Markov model estimated from yeast genome as background.  
This motif occurs quite frequently in the input sequences, and its score is highly 
significant.  It is possible that besides RAP1, another protein binds to this group of 
sequences. 

 
Table 1. Result comparison for the CRP data.  a. Motif probability matrix obtained from 36 aligned 
palindromic CRP binding segments by BioProspector.  b. Starting position of CRP sites by footprint 
experiment, EM and Gibbs with one-block motif model, and BioProspector with palindromic two-block 
motif model. 
========================================================================== 

a. Motif probability matrix using BioProspector

% 1 2 3 4 5 6 7 8

A 36.1 5.5 5.5 0.0 5.5 80.5 30.5 25.0

G 25.0 2.7 72.2 0.0 86.1 0.0 16.6 22.2

C 11.1 11.1 2.7 2.7 0.0 16.6 22.2 44.4

T 27.7 80.5 19.4 97.2 8.3 2.7 30.5 8.3 

b. Starting position of CRP sites

Footprint 1-block Motif 2-block Palind rome
Sequence Sites EM Gibbs Start1 Start2 Gap
cole 1 17, 61 61 61 63 73 2

eco arabop 17, 55 55 55 57 67 2
eco bglrl 76 76 76 78 88 2
eco crp 63 63 63 63 75 4
eco cya 50 50 50 52 62 2
eco deop 7, 60 7 7 9 19 2
eco gale 42 24 42 44 54 2

eco ilvbpr 39 39 39 41 53 4
eco lac 9, 80 9 9 83 92 1
eco male 14 14 14 16 26 2
eco malk 29, 61 61 61 63 75 4
eco malt 41 41 41 43 53 2
eco ompa 48 48 48 50 60 2
eco tnaa 71 71 71 73 83 3
eco uxul 17 17 17 19 29 2
pbr-p4 53 53 53 55 65 2
trn9cat 1, 84 5 5 1 12 3

Tdc 78 78 78 80 90 2

========================================================================== 

The two-block motif model works well when transcription regulation depends 
on the binding of two proteins (or a dimer).  As long as the two proteins are spatially 



  

close to each other, insertion and deletion between the two DNA binding sequences 
can be well tolerated.  By allowing for a variable gap between the blocks instead of 
forcing the segments with insertions and deletions to align, BioProspector has a 
better ability to find the correct CRP-binding sites.  As for the TATA-box 
experiment, the reason why BioProspector failed to detect 30% of the binding sites 
is probably because the RNA-polymerase-binding mechanism also depends on the 
specific physical-chemical and structural characteristics surrounding the two 
consensus sequences22.  It would be of interest to see whether RNA polymerase 
would bind to the sites BioProspector predicted if the correct sites were deleted, 
especially for the 3 sequences predicted to have 2 copies of the motif.  

Right now the most time consuming step in BioProspector is finding the motif 
score distribution using Monte Carlo.  We are exploring methods for calculating the 
statistical significance of an alignment directly from input sequence base distribution 
and background base distribution23, especially with third-order Markov background 
model and two-block motif models. 

Once BioProspector finds a correct motif and calculates its probability matrix 
Θ, we can use Θ to screen the whole genome of an organism.  For each sequence in 
the genome, the score ΣAi (Ai is the ratio between the probability of a segment being 
generated by Θ and the probability of it being generated by the background β) could 
be a good measure of the overall binding likelihood of the sequence by a particular 
transcription-regulator protein.  We can then use this score to recluster genes and 
provide insight in understanding the gene network of an organism. 
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