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ABSTRACT The ability to determine important features
within DNA sequences from the sequences alone is becoming
essential as large-scale sequencing projects are being under-
taken. We present a method that can be applied to the problem
of identifying the recognition pattern for a DNA-binding
protein given only a collection of sequenced DNA fragments,
each known to contain somewhere within it a binding site for
that protein. Information about the position or orientation of
the binding sites within those fragments is not needed. The
method compares the "information content" ofa large number
of possible binding site alignments to arrive at a matrix
representation of the binding site pattern. The specificity of the
protein is represented as a matrix, rather than a consensus
sequence, allowing patterns that are typical of regulatory
protein-binding sites to be identified. The reliability of the
method improves as the number ofsequences increases, but the
time required increases only linearly with the number of
sequences. An example, using known cAMP receptor protein-
binding sites, illustrates the method.

Gene expression is often controlled by protein factors that
interact with DNA regions to affect transcription. Under-
standing the regulation of the expression requires knowing
both the protein factors and the DNA sites at which they act.
The sites have traditionally been determined by isolating
cis-acting mutations that affect expression and then deter-
mining the changes in the DNA that accompany the mutant
phenotypes (1). More recently, regulatory proteins have been
used to affinity purify the DNA regions to which they bind,
and "footprinting" techniques have further delimited the
binding sites (2). Each of these methods is time consuming
and gives only partial information about the binding site. The
final determination ofthe binding site pattern usually includes
a comparison of many example sites. A method to determine
the binding sites from the DNA sequences alone could greatly
facilitate the process. Current sequencing technology is rapid
enough that the most efficient means of determining the
binding specificity of a protein may be to sequence a
collection of regions known to contain binding sites. These
may be a set of restriction fragments that are shown to bind
the protein or a collection ofDNA segments to which binding
sites have been mapped. Since each ofthe fragments contains
a binding site, the pattern of bases recognized by the protein
should be discernible as the most significant pattern in the
collection.

Regulatory Patterns

The difficulty arises that binding site patterns are not usually
simple strings of bases. For example, Escherichia coli pro-
moter sequences have two highly conserved parts, called the
-35 and -10 regions (3, 4). The consensus sequences for
those are TTGACA and TATAAT, respectively. The con-

sensus spacing between those regions is 17 bases, but other
spacings are also allowed. An individual promoter may match
the consensus at only a few positions and, while some
positions are more conserved than others, no position is
absolutely conserved. The most conserved bases in the -10
region are TAnnnT, but only =65% of all promoters even
match this limited criterion (4). This means that methods of
identifying the binding pattern that rely on common sub-
strings, or "words," will likely fail.
A better representation of a protein's binding specificity

than a consensus sequence is a matrix that has an element for
each possible base at each position of the site (5). The matrix
elements represent contributions of the individual bases to
the protein-DNA interaction. The affinity of the protein for
any site depends on the sum of all the interactions between
the DNA and the protein. The individual interactions may or
may not be independent; the simplest representation assumes
independence. If the sequences of several binding sites are
known, they can be used to construct a matrix representation
of the protein that will give scores to individual sites that
correlate well with the relative binding affinities of those sites
(5-8).
The sequences of 23 identified binding sites of cAMP

receptor protein (CRP) are shown in Fig. 1A (8, 9). Fig. 1B is
a matrix whose elements are the frequency that each base
occurs at each position within the CRP-binding sites. Fig. 1C
is the matrix representation of CRP specificity, based on the
information at each position of the site (5, 7, 8). The matrix
is a representation ofthe specificity ofthe binding protein and
can be used to search for new sites (5, 11-13). It can also be
used to rank the affinities of different sites, and matrices of
this type usually do well as predictors of quantitative activity
(5-8). Fig. iD shows the "information content" at each
position of the site (10), derived from the formula

T

Iseq = E Abl0g2(A1
b=A Pb

where fb is the observed frequency of each base in the
collection of sites and Pb is the fraction of each base in the
genome. Note that thefb terms are the elements of the matrix
of Fig. 1B, and the log2(fb/pb) terms are the elements of the
matrix of Fig. 1C. Therefore, the "information content"
plotted in Fig. 1D is the dot product of the position (column)
vectors from those two matrices. The "information content"
is a measure ofhow constrained the choice ofbases is at each
position in the binding sites (5, 7, 8, 10).

The Algorithm

The problem of identifying the binding sites from a collection
of unaligned sequences is equivalent to finding an alignment
that maximizes the "information content," at least within a
local "window" that is the width of the binding site. That is,
when the sequences are aligned by their binding sites there
will be a peak of "information content," as in Fig. 1D, that

Abbreviation: CRP, cAMP receptor protein.
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B

A 0.48 0.48 0.39 0.04 0.00 0.04 0.13 0.83 0.26 0.22 0.13 0.48 0.22 0.31 0.09 0.09 0.65 0.26 0.65 0.17 0.30 0.26
C 0.04 0.00 0.13 0.09 0.04 0.04 0.00 0.04 0.30 0.35 0.17 0.04 0.17 0.17 0.09 0.87 0.09 0.65 0.13 0.26 0.09 0.130 0.09 0.13 0.13 0.00 0.78 0.00 0.83 0.04 0.17 0.26 0.35 0.26 0.44 0.26 0.17 0.00 0.22 0.04 0.17 0.17 0.00 0.09T 0.39 0.39 0.35 0.87 0.17 0.91 0.04 0.09 0.26 0.17 0.35 0.22 0.17 0.26 0.65 0.04 0.04 0.04 0.04 0.39 0.61 0.52

C

A 0.94 0.94 0.64 -2.64 -2.75 -2.63 -0.94 1.73 0.07 -0.18 -0.94 0.94 -0.18 0.31 -1.47 -1.47 1.38 0.07 1.39 -0.54 0.26 0.06
C -2.64 -2.75 -0.94 -1.47 -2.63 -2.63 -2.75 -2.64 0.28 0.49 -0.56 -2.64 -0.56 -0.56 -1.47 1.80 -1.47 1.39 -0.93 0.07 -1.47 -0.94
G -1.47 -0.94 -0.94 -2.75 1.66 -2.75 1.73 -2.64 -0.54 0.06 0.49 0.06 0.82 0.06 -0.56 -2.75 -0.18 -2.63 -0.54 -0.54 -2.75 -1.47
T 0.64 0.64 0.49 1.80 -0.54 1.88 -2.64 -1.47 0.07 -0.56 0.49 -0.18 -0.56 0.06 1.38 -2.64 -2.64 -2.63 -2.63 0.66 1.29 1.06

D
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Position

FIG. 1. CRP binding sites. (A) Twenty-three sites identified as binding to CRP (8, 9). (B) The frequency with which each base occurs at each
position in the CRP binding sites. (C) The specificity matrix for the protein, based on the binding sites, which is calculated as log2(fb/pb), where
fb is the observed frequency of each base (from the matrix above) and Pb is the a priori probability of obtaining base b. In this example Pb =
0.25 for all b, approximating the E. coli genomic composition. At positions for which fb = 0, an estimated frequency of 0.5/23 is used in the
calculation. (D) The "information content" at each position of the CRP binding sites is plotted (10). The sum of all positions is 13.06 bits.

is greater (statistically more significant) than other peaks that
occur by chance. A rigorous approach to identifying the
binding sites would be to calculate, for every possible
alignment of the fragments, the "information content."
However, if there are N sequences, each of length L, then
there are LN possible alignments to consider, impractical for
any interesting case. Methods have been developed for
finding significant patterns in approximately aligned se-
quences (14, 15), but these are not useful when no alignment
information is available. An alternative approach is to assume
that the specificity of the protein can be represented as a
matrix and to search for a matrix that gives at least one
high-scoring site on each fragment. We have developed an
algorithm that adds sequences to the analysis one at a time,
at each step keeping many matrices (23). As more sequences
are added to the analysis, the matrix representing the binding
sites of the protein emerges from the background of possible
alignments as the one with the highest "information
content."
The basic algorithm can be outlined as follows:
(i) Each of the k-words (k-long substrings, with k a variable

chosen by the user) of the first sequence are used as an initial
set of "interesting" matrices. These initial matrices contain
one element of value 1.00 in each column, corresponding to
the base at that position of the sequence, and all other
elements are of value 0. Each of these words is a potential

binding site, and with no further information they are equally
likely.

(ii) The next sequence on the list is added to the analysis.
Each of the set of interesting matrices is compared with each
position of the new sequence.

(iii) A new set of interesting matrices is generated by
updating some of the previous matrices by the addition of
sites from the new sequence.

(iv) Steps 2 and 3 are repeated until all sequences have been
included in the analysis.
The set of new interesting matrices may be selected in

several ways. For instance, a threshold of "information
content" could be used, and all new matrices that exceed that
threshold would be kept for the next step. Alternatively, if
computer memory is adequate to store X matrices, then the
X-best might be kept for the next step. We have used a
simpler criterion in the example below. Each existing matrix
is updated with its best scoring site on the new sequence.
When there are ties, which occur when two (or more) sites
score highest from a particular matrix, each site is kept. This
can lead to a slight increase in the number of matrices at each
successive step, but the total number is approximately equal
to the length of the first sequence.
The choice of the matrix width is not especially critical; the

size of the matrix need not match the binding-site size for the
method to work. When the matrix is larger than the binding
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colel
ecoarabop
ecobglrl
ecocrp
ecocya
ecodeop
ecogale
ecoilvbpr
ecolac
ecomale
ecomalk
ecomalt
ecoompa
ecotnaa
ecouxul
pbr-p4
trn9cat
(tdc)

taatgtttgtgctg
gacaaaaacgcgta
acaaatcccaataa
cacaaagcgaaagc

ggtTTTTGTGGCATCGGGCGAGAATagcgcgtggtgtgaaagactgtTTTrTTGATCGTTTTCACAAAAatggaagtccacagtcttgacag
aacAAAAGTGTCTATAATCACGGCAgaaaagtccacattgaTTATTTGCACGGCGTCACACTTtgctatgccatagcatttttatccataag
acttaattattgggatttgttatatataactttataaattcctaaaattacacaaagttaatAACTGTGAGCATGGTCATATTTttatcaat
ctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatGTATGCAAAGGACGTCACATTAccgtgcagtacagttgatagc

FIG. 2. The example data set. These are 105-base regions surrounding the sites in Fig. lA (shown capitalized). They were obtained from
GenBank Release 55, with the LOCUS name shown at the left. (The tdc gene is not in that release; the sequence was obtained from ref. 16.)

site, several matrices will be found that each include the
binding sites within. When the matrix is smaller than the
binding site, several overlapping matrices will be found that
combine to give the entire site. The important consideration
is that the matrix be large enough for the information in the
binding sites to stand out against the background of other
matrices. We have chosen to start with a matrix width of 20
bases; this is a fairly typical size for a binding site, at least for
prokaryotic regulatory proteins (10).

An Example

Fig. 2 shows the data used in this example. Each sequence is
105 bases long and contains at least one CRP-binding site. In
each case, the DNA strand shown is the one that appears in
GenBank, and the order of sequences is alphabetical by
GenBank LOCUS name. The regulated genes can occur at
either end of these sequences. This example is typical of the
type of data one might have from which to deduce binding
sites for a protein. Were the orientation ofthe sites not known
and no assumption of symmetry possible, both DNA strands
would have to be compared.
The 86 20-long words of the first sequence constitute the

initial set of matrices. As described above, each of these
words is compared with each of the 20-long words of the next
sequence and the best match for each matrix kept as a
two-sequence matrix. As there was one tie, 87 matrices are
kept at this step. Each of those is then compared with the
20-long words of the next sequence, and the best match to
each matrix is kept again. This procedure is followed until all
18 sequences have been included; the total number of
matrices at that point is 94. The "information content" of
each matrix is calculated by Eq. 1. Fig. 3A shows the
distribution of "information content" of these 94 matrices.
Three matrices stand out as clearly significant above the
others. These are overlapping matrices that collectively
cover 22 bases, essentially as in Fig. 1. The other cluster of
13 matrices below the most significant, but still above the
main distribution, are variations on the binding sites. In some
cases they overlap parts of the binding site but not all of it.
In other cases they overlap it completely but have some
additional sites that decrease the total "information content."

Examination of the three best matrices reveals two things.
(i) The overlap shows that the site is better represented as a
22-long matrix. (ii) The most significant part of each matrix
is contained in a central region of only 16 bases, positions 4-
19 of Fig. 1. The entire analysis was repeated using each of
these alternative matrix widths. In each case a single best
matrix was found that stands out above the distribution (Fig.
3 B and C) and represents the known binding sites. The best
scoring 16-wide matrix is shown in Fig. 4. This "information
content" is very similar to that obtained from the collection

ofknown binding sites (Fig. 1). The "information content" in
Fig. 4C is actually greater and somewhat more symmetric
than from positions 4-19 of Fig. 1D. This difference is due to
the inclusion in Fig. LA of several second, and presumably
weaker, sites that lower the total information and that are
least conserved on the 3' side. The matrices of Fig. 4 come
from only one site per sequence, thereby selecting for the
most highly conserved collection of sites.
The matrices of Fig. 4 have the highest "information

content" of all the 16-wide matrices obtained by our algo-
rithm. To test whether the matrix of Fig. 4B represents the
specificity of CRP, every position ofeach sequence shown in
Fig. 2 was evaluated with the matrix (as described in refs. 5
and 11-13). All the identified CRP-binding sites were among
the highest scoring sites. With two exceptions, the highest
scoring site on each sequence was an identified CRP-binding
site. These two exceptions are interesting to examine. The
most highly conserved bases in the binding sites constitute a
symmetric consensus sequence of TGTGAnnnnnnTCACA
(Fig. 1 and ref. 8). The identified CRP-binding site for the
malK gene has six matches to that, five on the 5' side (Fig.

20 -
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Information Content

FIG. 3. Distribution of "information content" of the matrices at
the end of each analysis, described in the text. Count is the number
of matrices with "information content" in the interval shown. (A)
The 94 20-wide matrices. (B) The 93 22-wide matrices. (C) The 93
16-wide matrices.

acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagca&GGTGTTLAATTGATCACGTTTtagaccattttttcgtcgtgaaactaaaaaaacc
agtgaaTTATTTGAACCAGATCGCATTAcWgatgcaaacttgtaagtagatttccttAATTGTGATGTGTATCGAAGTGtgttgcggagtagatgttagaata
gcgcataaaaaacggctaaattcttgtgtaaacgattccacTAATTTATTCCATGTCACIMttcgcatctttgttatgctatggttatttcataccataagcc
gctccggcggggttttttgttatctgcaattcagtacaAAACGTGATCAICCCCTCAATTttccctttgctgaaaaattttccattgtctcccctgtaaagctgt
aacgcaatTAATGTGAGTTAGCTCACTCATtaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggAATTGTGAGCGGATAACAATTTcac
a..attaccgccaaTTCTGTAICAGAGATCACACAAagcgacggtggggcgtaggggcaaggaggatggaaagaggttgccgtataaagaaactagagtccgttta
ggaggaggcgggaggatgagaacacggcTTCTGTGAACTAAACCGAGGTCatgtaaggaatttcgtgatgttgcttgcaaaaatcgtggcgattttatgtgcgca
gatcagcgtcgttttaggtgagttgttaataaagatttggAATTGTGiCACAGTGCAAATTCagacacataaaaaaacgtcatcgcttgcattagaaaggtttct
gctgacaaaaaagattaaacataccttatacaagacttttttttcatATGCCTGACGGAGTTCACACTTgtaagttttcaactacgttgtagactttacatcgcc
ttttttaaacattaaaattcttacgtaatttataatctttaaaaaaagcatttaatattgctccccgaacGATTGTGATTCGATTCACATTTaaacaatttcaga
cccatgagagtgaaatTGTTGTGATGTGGTTAACCCAAttagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatcteatccgatgcaagc
ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgCGGTGTGAAATACCGCACAGATgcgtaaggagaaaataccgcatcaggcgctc
CTGTGACGGAAGATCACTTCgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcga&AATGAGACGTTGLTCGGCACG
gatttttatactttaacttgttgatatttaaaggtatttaattgtaiLtaacgatactctggaaagtattgaaagttaATTTOTGAGTGOTCOCACATATcctgtt
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A
A 0.00 0.00 0.00 0.17 0.78 0.28 0.17 0.11 0.50 0.06 0.11 0.00 0.06 0.83 0.11 0.89
C 0.22 0.06 0.06 0.00 0.06 0.22 0.50 0.28 0.00 0.28 0.22 0.06 0.72 0.00 0.72 0.06
G 0.06 0.61 0.00 0.72 0.00 0.11 0.22 0.33 0.17 0.56 0.28 0.11 0.17 0.11 0.00 0.00
T 0.72 0.33 0.94 0.11 0.17 0.39 0.11 0.28 0.33 0.11 0.39 0.83 0.06 0.06 0.17 0.06

B
A -3.43 -3.43 -3.43 -0.82 1.38 -0.10 -0.82 -1.45 0.74 -2.32 -1.45 -3.43 -2.32 1.47 -1.45 1.57
C 0.29 -1.59 -1.59 -9.97 -1.59 0.29 1.47 0.64 -2.70 0.64 0.29 -1.59 2.00 -2.70 2.00 -1.59
G -1.81 1.54 -2.92 1.78 -2.92 -0.93 0.07 0.65 -0.31 1.42 0.42 -0.93 -0.31 -0.93 -2.92 -2.92
T 1.22 0.09 1.60 -1.50 -0.87 0.33 -1.50 -0.15 0.09 -1.50 0.33 1.42 -2.37 -2.37 -0.87 -2.37

C

I I I I I I I I - I I I --
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Position

FIG. 4. The best 16-wide matrix. The positions are numbered 4-19, corresponding to the central positions of Fig. 1. (A) The frequency of
each base for the sites included in the best matrix, as in Fig. 1B. (B) The specificity matrix determined from the frequency matrix, as in Fig.
1C. In this case the a priori values were determined from the data set shown in Fig. 2: PA = 0.30; PC = 0.18; PG = 0.21; and PT = 0.31. Analyses
were also performed using Pb = 0.25 for all b. In that case, essentially the same matrix remained the best, but the distribution had more

high-scoring matrices due to the high probability of adenine and thymine matches. The specificity matrix values for positions withfb = 0 were

estimated usingfb = 0.5/18 from the 18 sequences in the data set. (C) The "information content" at each position of the matrix is plotted. The
sum from all positions is 12.15 bits.

1). The site with the highest score by the matrix of Fig. 4B
occurs 3' of the one identified, with seven matches to the
consensus, cGTGAtgttgcTtgCA (Fig. 2). It is conceivable
that the CRP protein binds to this site instead of the one
identified or that it binds to both (17).
The other exception is in the cat regulatory region. Two

binding sites have been identified (Figs. 1 and 2) and shown
to interact with the CRP protein in footprinting experiments
(18). Site 1 has six matches with the consensus, and site 2 has
five matches. Site 1 demonstrated the tightest binding of the
two sites. Although both of these sites score high with the
matrix of Fig. 4, the highest scoring site on the fragment is
between them, gGTGtccctgtTgAtA, also having six matches
with the consensus. Binding to this site has not been
reported. Site 2 is especially interesting because it has nine
matches with the consensus when an additional base is
allowed between the two highly conserved regions, TGT-
GAcggccgcTCACt. The fact that site 1 binds more tightly
than site 2 suggests that either the variable spacing is not
allowed or it causes enough strain in the interaction to limit
the gain from additional consensus-base contacts. Variable
spacing between the conserved regions of regulatory sites,
excluding promoters, are not acommon feature, although one
has been verified (19). Our method could be amended to allow
for a small number of gaps, perhaps one per site, but the
complexity of the algorithm would increase substantially.

Conclusions

The complexity of the algorithm used in this study is one of
its most appealing features. The memory required is inde-
pendent of the number of sequences and linearly dependent
on their lengths. The time required is linearly dependent on
the number of sequences and the square of their lengths. This
is in sharp contrast to rigorous methods that require com-

paring all possible alignments that require O(LN)* time and
space. The savings comes from selecting only a small subset
of possible alignments to consider those that are "inter-
esting," in that they are the best matches on each sequence
to a set of possible matrix representations of the protein's
specificity. The number of matrices that are considered at
each step could be quite large, up to the limit of the computer
memory available, although in the CRP example we needed
to keep only one for each possible word in the first sequence.
Reliability of the best matrix representation increases with
the number of sequences. In the CRP example, in which we
know the pattern of the binding sites, one pass through the
data was sufficient to determine that pattern and identify the
sites. If we hadn't known the answer, we would randomize
the order of sequences several times and repeat the analysis
to see whether we always got a similar answer or, if not,
determine the variation among the most significant patterns.
As the amount of determined DNA sequence increases,

methods that identify the important features of those se-
quences using only the information within the sequences will
become increasingly important. Projects like the Human
Genome Initiative (20) will generate such an enormous
amount of sequence data that efficient methods of pattern
identification will be essential to elucidate those features. We
present a method to help in one such task-that of identifying
regulatory protein-binding sites. Because the method relies
on an information measure of similarity among sequences,
which has been shown to give reliable representations of
protein specificity (5, 7, 8), we expect the method to work for
any sequence-specific DNA-binding proteins. Variations on
the basic method should also be applicable to similar prob-

*The notation O(LN) is read "order LN" and means that the
calculation time and space (computer memory) required is aLN +
b, where a and b are constants. The algorithm described in this
paper is O(L) in space and O(L2N) in time.
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lems in which functionally analogous sites can be identified
by information within linear sequences. Functional domains
of some proteins may be of this type (21, 22), and related
methods may be useful in identifying them.
We thank Drs. Gerald Hertz and Charles E. Lawrence for

stimulating discussions and helpful suggestions. We are grateful for
comments on the manuscript from Drs. Susan Dutcher, Matt Scott,
Bill Wood, and Mike Yarus. Sequences were extracted from Gen-
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Information Resource at Baylor College of Medicine (Houston). This
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