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1.1 Abstract

A “haplotype” is a DNA sequence that has been inherited from one parent. Each person
possesses two haplotypes for most regions of the genome. The most common type of vari-
ation among haplotypes possessed by individuals in a population is the single nucleotide
polymorphism (SNP), in which different nucleotides (alleles) are present at a given site
(locus). Almost always, there are only two alleles at a SNP site among the individuals
in a population. Given the likely complexity of trait determination, it is widely assumed
that the genetic basis (if any) of important traits (e.g., diseases) can be best understood
by assessing the association between the occurrence of particular haplotypes and particular
traits. Hence, one of the current priorities in human genomics is the development of a full
Haplotype Map of the human genome [40, 47, 48, 52], to be used in large-scale screens of
populations [16, 55]. In this endeavor, a key problem is to infer haplotype pairs and/or
haplotype frequencies from genotype data, since collecting haplotype data is generally more
difficult than collecting genotype data. Here, we review the haplotype inference problem
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(inferring pairs and inferring frequencies), the major combinatorial and statistical methods
proposed to solve these two problems, and the genetic models that underlie these methods.

1.2 Introduction to Variation, SNPs, Genotypes, and
Haplotypes

Now that high-throughput genomic technologies are available, the dream of assessing DNA
sequence variation at the population level is becoming a reality. The processes of natural
selection, mutation, recombination, gene-conversion, genome rearrangements, lateral gene
transfer, admixture of populations, and random drift, have mixed and remixed alleles at
many loci so as to create the large variety of genotypes found in many populations. The
challenge is to find those genotypes that have significant and biologically meaningful as-
sociations with important traits of interest. A key technological and computational part
of this challenge is to infer “haplotype information” from “genotype information”. In this
section, we explain the basic biological and computational background for this “genotype
to haplotype” problem.

In many diploid organisms (such as humans) there are two (not completely identical)
“copies” of almost all chromosomes. Sequence data from a single copy is called a haplotype,
while a description of the conflated (mixed) data on the two copies is called a genotype.
When assessing the genetic contribution to a trait, it may often be much more informative
to have haplotype data than to have only genotype data. The underlying data that form
a haplotype are either the full DNA sequence in the region, the values of microsatellite
markers, or more commonly the single nucleotide polymorphisms (SNPs) in that region.
A SNP is a single nucleotide site where more than one (usually two) nucleotides occur
with a population frequency above some threshold (often around 5-10%). The SNP-based
approach is the dominant one, and high density SNP maps have been constructed across
the human genome with a density of about one SNP per thousand nucleotides [48, 52].

1.2.1 The Biological Problem

In general, it is not easy to examine the two copies of a chromosome separately, and genotype
data rather than haplotype data are obtained, although it is the haplotype data that may
be of greater use. The data set typically consists of n genotype vectors, each of length m,
where each value in the vector is either 0,1, or 2. The variable n denotes the number of
individuals in the sample, and m denotes the number of SNP sites for which one has data.
Each site in the genotype vector has a value of 0 (respectively 1) if the associated site on
the chromosome has state 0 (respectively 1) on both copies (it is a homozygous site); it
has a value of 2 otherwise (the chromosome site is heterozygous). The goal is to extract
haplotype information from the given genotype information.

A variety of methods have been developed to do this (e.g., [14, 15, 29, 36, 43, 59, 62,
64, 67, 69]). Some of these methods give very accurate results in some circumstances,
particularly when identifying common haplotypes in a population. However, research on
haplotype inference continues because no single method is considered fully adequate in
all applications, the task of identifying rare haplotypes remains difficult, and the overall
accuracy of present methods has not been resolved.

1.2.2 The Computational Problems
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The haplotype inference (HI) problem can be abstractly posed as follows. Given a set of
n genotype vectors, a solution to the HI problem is a set of n pairs of binary vectors, one
pair for each genotype vector. For any genotype vector g, the associated binary vectors
v1, v2 must both have value 0 (or 1) at any position where g has value 0 (or 1); but for any
position where g has value 2, exactly one of v1, v2 must have value 0, while the other has
value 1.

A site is considered “resolved” if it contains 0 or 1, and “ambiguous” if it contains a 2. If
a vector has zero ambiguous positions, it is called “resolved” or “unambiguous”; otherwise
it is called “ambiguous”. One can also say that the conflation of v1 and v2 produces the
genotype vector g, which will be ambiguous unless v1 and v2 are identical. For an individual
with h heterozygous sites there are 2h−1 possible haplotype pairs that could underlie its
genotype. For example, if the observed genotype g is 0212, then the pair of vectors 0110,
0011 is one pair, while the pair 0111, 0010 is the other. Of course, we want to infer the pair
that gave rise to the genotype of each of the n individuals.

A related problem is to estimate the frequency of each inferred haplotype in the sample.
We call this the HF problem. It is important to note that a solution to the HI problem
necessarily solves the HF problem, but the converse is not true.

1.2.3 The Need for a Genetic Model

Non-experimental haplotype inference (the HI and HF problems) would likely be inaccurate
without the implicit or explicit use of some genetic model of haplotype evolution to guide
an algorithm in constructing a solution. The choice of the underlying genetic model can
influence the type of algorithm used to solve the associated inference problem.

1.2.4 Two Major Approaches

There are two major approaches to solving the inference problem: combinatorial methods
and statistical methods. Combinatorial methods often state an explicit objective function
that one tries to optimize in order to obtain a solution to the inference problem. Statistical
methods are usually based on an explicit model of haplotype evolution; the inference prob-
lem is then cast as a maximum-likelihood or a Bayesian inference problem. Combinatorial
approaches are discussed in Sections 1.3 to 1.5.5, and statistical approaches are discussed
in Section 1.6.

1.3 Clark’s Algorithm and Other Rule-Based Methods

1.3.1 Introduction to Clark’s Algorithm

Clark’s algorithm to solve the HI problem [14] has been widely used and is still in use today.
The algorithm starts by identifying any genotype vectors with zero or one ambiguous sites,
since these vectors can be resolved in only one way. These haplotypes are called the initial
resolved haplotypes; this method requires that some be derivable from the input vectors
(sample). One attempts to resolve the remaining ambiguous genotypes by starting with the
initial resolved haplotypes. Clark proposed the following rule that infers a new resolved
vector NR from an ambiguous vector A and an already resolved vector R. The resolved
vector R can either be one of the initial resolved haplotypes, or a haplotype inferred by an
earlier application of the Inference Rule.
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Inference Rule: Suppose A is an ambiguous vector with h ambiguous sites
and R is a resolved vector that is a haplotype in one of the 2h−1 potential
resolutions of vector A. Then infer that A is the conflation of one copy of
resolved vector R and another (uniquely determined) resolved vector NR. All
the resolved positions of A are set the same in NR, and all of the ambiguous
positions in A are set in NR to the opposite of the entry in R. Once inferred,
vector NR is added to the set of known resolved vectors, and vector A is from
the set of ambiguous vectors.

For example, if A is 0212 and R is 0110, then NR is 0011.
When the Inference Rule can be used to infer the vector NR from the vectors A and R,

we say that R can be applied to (resolve) A. It is easy to determine if a resolved vector R
can be applied to resolve an ambiguous vector A: R can be applied to A if and only if A
and R contain identical unambiguous sites.

Clark’s entire algorithm for resolving the set of genotypes is to first identify the initial
resolved set, and then repeatedly apply the Inference Rule until either all the genotypes have
been resolved, or no further genotypes can be resolved. There are important implementation
details for Clark’s algorithm that need to be specified, and one can choose different ways
to do this. Several alternative variations were studied in [64] and the results of that study
will be described in Section 1.3.4.

Note that in the application of the Inference Rule, for any ambiguous vector A there may
be several choices for vector R, and any one choice can constrain future choices. Hence, one
series of choices might resolve all the ambiguous vectors in one way, while another execution
involving different choices might resolve the vectors in a different way, or leave ambiguous
vectors that cannot be resolved (orphans). For example, consider two resolved vectors 0000
and 1000, and two ambiguous vectors 2200 and 1122. Vector 2200 can be resolved by
applying 0000, creating the new resolved vector 1100, which can then be applied to resolve
1122. In this way, one resolves both of the ambiguous vectors and ends with the resolved
vector set 0000, 1000, 1100 and 1111. But 2200 can also be resolved by applying 1000,
creating 0100. At that point, none of the three resolved vectors, 0000, 1000 or 0100 can be
applied to resolve the orphan vector 1122.

Clark’s method can produce different solutions depending on how the data is ordered,
so the problem of choices is addressed in [14] by reordering the data multiple times and
running the algorithm on each ordering. The “best” solution among these executions is
reported. Of course, only a tiny fraction of all the possible data orderings can usually be
tried. We refer to this as the local inference method.

Without additional biological insight, one cannot know which solution (or data ordering)
is the most accurate. However, simulations discussed in [14] showed that the inference
method tended to produce the wrong vectors only when the execution also leaves orphans.
The interpretation is that there is some “global” structure to the set of real haplotype pairs
that underlie the observed genotypes, so that if some early choices in the method incorrectly
resolve some of the genotypes, then the method will later become stuck, unable to resolve
the remaining genotypes. Clark recommended that the execution that resolved the most
genotypes should be the one most trusted. The efficacy of the local inference method was
shown in [14] and in simulations that we have done, when the data are such that there is
a unique execution that maximizes the number of resolved genotypes. However, there are
also data sets where most, if not all, of the executions resolve all of the genotypes and do
so differently. In that case, some other approach must be used. We discuss that situation
in Section 1.3.4.
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1.3.2 What is the Genetic Model in Clark’s Method?

Here we give a partial justification for the Inference Rule described above.
First, note that Clark’s method resolves identical genotypes identically, implying the

assumption that the history leading to two identical sequences is identical. The genetic
model that justifies this is the “infinite sites” model of population genetics, in which only one
mutation at a given site has occurred in the history of the sampled sequences [70]. Second,
the Inference Rule seems most applicable when it is assumed that the genotypes in the
current population resulted from random mating of the parents of the current population.
The sampled individuals are also drawn randomly from the population, and the sample is
small compared to the size of the whole population, so the initial resolved vectors likely
represent common haplotypes that appear with high frequency in the population.

These two assumptions are consistent with the way in which the method gives prefer-
ence to resolutions involving two initially resolved haplotypes. Such haplotypes are always
queried first in Clark’s method. The use of the Inference Rule seems sensible as long as an
unresolved genotype is correctly resolved in this way. Similarly, the rule gives preference
to resolutions involving one initially resolved haplotype as compared to those involving no
initially resolved haplotypes. (However, a logically consistent extension of the rule would
require use of two initially resolved haplotypes whenever possible, but this is not what
Clark’s method does).

We can define the “distance” of an inferred haplotype NR from the initial resolved vec-
tors as the number of inferences used on the shortest path of inferences from some initial
resolved vector, to vector NR. The above justification for the use of the Inference Rule be-
comes weaker as it is used to infer vectors with increasing distance from the initial resolved
vectors. However, Clark’s Inference Rule is justified in [14] by the empirical observation of
consistency discussed above. For additional perspective on Clark’s method see [41].

1.3.3 The Maximum Resolution Problem

Given what was observed and proposed in [14], the major open algorithmic question from
is whether efficient rules exist to break choices in the execution of Clark’s algorithm, so
as to maximize the number of genotypes it resolves. This leads to the problem studied in
[35, 36]:

Maximum Resolution (MR) Problem: Given a set of genotypes (some am-
biguous and some resolved), what execution maximizes the number of ambiguous
vectors that can be resolved by successive application of Clark’s Inference Rule?

An algorithm to solve the MR problem must take a more global view of the data than does
the local inference method, in order to see how each possible application of the Inference
Rule influences later choices.

We show in [36] that the MR problem is NP-hard, and in fact, Max-SNP complete.
However, the MR problem was reformulated as a problem on directed graphs, with an
exponential time (worst case) reduction to a graph-theoretic problem that can be solved via
integer linear programming. The general idea is to encode all the possible actions of Clark’s
algorithm as a directed, acyclic graph. In that graph, each node represents a haplotype
that could be generated in some execution of Clark’s algorithm, and an edge extends from
node u to node v if and only if the haplotype at u can be used to resolve some genotype
in the data, resulting in the inference of the haplotype at node v. Accordingly, the MR
problem can be formulated as a search problem on this graph, and solved using integer linear
programming. Experiments [36] showed that this approach is very efficient in practice, and
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that linear programming alone (without explicit reference to integrality) often suffices to
solve the maximum resolution problem. However, an alternative modification of Clark’s
method proved more successful in obtaining more accurate resolutions. We next discuss
this modification.

1.3.4 Improving Clark’s Method

Experiments done with the MR problem suggest that solution of the maximum resolution
problem is not a completely adequate way to find the most accurate solutions. One signifi-
cant problem is that there are often many solutions to the MR problem, i.e., many ways to
resolve all of the genotypes. Moreover, while it is clear that Clark’s method should be run
many times, and this can generate many different solutions, it is not clear how to use the
results obtained. In fact, no published evaluations of Clark’s method, except for the evalua-
tion in [64], propose an approach to this issue, and almost all have run Clark’s method only
once on any given data set. This ignores the stochastic behavior of the algorithm, and these
evaluations are uninformative. The critical issue in Clark’s method is how to understand
and exploit its stochastic behavior.

Clark’s method is just one specific instantiation of the “rule-based” approach to the HI
problem. In this general approach, one starts by enumerating the unambiguous haplotypes
in the sample and then proceeds to use these to resolve ambiguous genotypes. However,
different variations of the rule-based approach differ in how the list of reference haplotypes is
formed and updated during the process of inferral and how the list of ambiguous genotypes
is treated. Some of the variations are discussed in [64]; they can differ in the genetic model
with which they are consistent.

In [64], we examined the performance of several variations of the rule-based method
(including Clark’s original method), using a set of 80 genotypes at the human APOE locus,
of which 47 were ambiguous; each genotype contained nine SNP sites. The real haplotype
pairs were experimentally inferred in order to assess the inferral accuracy of each variation
(how many inferred haplotype pairs matched the real haplotype pairs). Most variations
produced a large number of different solutions, each of which resolved all of the 47 ambiguous
genotypes. The variability of accuracy among these solutions was substantial, and a solution
chosen at random from among the solutions would likely be one with poor accuracy. Hence,
an important issue in using rule-based methods, such as Clark’s method, is how to exploit
the many different solutions that it can produce.

How to Handle Multiple Solutions: The Consensus Approach

The multiplicity of solutions motivates an effort to understand how they can be used so as
to provide a single accurate solution.

We found that the following strategy works to greatly improve the accuracy of any of the
variations of the rule-based method. First, for the input genotype data, run the algorithm
many times (say, 10,000), each time randomizing the order of the input data. In some
variations, we also randomize the decisions that the method makes. The result is a set
of solutions that may be quite different from one another. Second, select those runs that
produce a solution using the fewest or close to the fewest number of distinct haplotypes; in
our analysis of the APOE data, the number of such runs was typically under 100. In those
runs, record the haplotype pair that was most commonly used to explain each genotype g.
The set of such explaining haplotype pairs is called the “consensus” solution. We observed
that the consensus solution had dramatically higher accuracy than the average accuracy of
the 10,000 solutions. For example, for the APOE data, out of the 10,000 executions of one
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of the variations, there were 24 executions that used 20 or 21 distinct haplotypes, where
20 was the smallest observed number. The average accuracy of the 10,000 executions was
29 correct haplotype pairs out of the 47 ambiguous genotypes, and the execution with the
highest accuracy in the 10,000 had 39 correct pairs. However, the average accuracy of the
24 selected executions was 36, and the consensus solution of those 24 executions had 39
correct pairs. Hence, this simple rule allowed us to home in on a single solution that was
as good as the most accurate solution out of all 10,000 solutions. In another variation,
the consensus solution had 42 correct pairs, while the average of all the 10,000 solutions
had 19 correct pairs. These results compare well with those of other approaches. Multiple
executions of the program Phase [69] always produced 42 correct resolutions, whereas the
program Haplotyper [62] produced a range of solutions with most getting either 43 or 42
correct, with one solution getting 44 correct, and three solutions getting 37 correct.

We also observed that among the solutions that use the smallest and next-to-smallest
number of distinct haplotypes, any haplotype pair that is used with high frequency, say
above 85% of the time, was almost always correct. This allows one to home in on those
pairs that can be used with high confidence.

1.4 The Pure Parsimony Criterion

1.4.1 Introduction to Pure Parsimony

A different approach to the haplotype inference problem is called the Pure-Parsimony ap-
proach. To our knowledge, this approach was first suggested by Earl Hubbell, who also
proved that the problem of finding such solutions is NP-hard [50]. The Pure-Parsimony
problem is:

Find a solution to the haplotype inference problem that minimizes the total
number of distinct haplotypes used.

For example, consider the set of genotypes: 02120, 22110, and 20120. There are solutions
for this example that use six distinct haplotypes, but the solution (00100, 01110), (01110,
10110), (00100, 10110) uses only three distinct haplotypes.

Use of such a parsimony criterion is consistent with the fact that the number of observed
distinct haplotypes in natural populations is vastly smaller than the number of possible
haplotypes; this is also expected given the plausible assumption that the mutation rate at
each site is small and recombinations rates are low. Further, we observed in Section 1.3.4
that the most accurate rule-based haplotype inferences were those that inferred a small
number of distinct haplotypes.

We note that some authors have described Clark’s method [14] as relying on a parsimony
criterion for the number of haplotypes used [1, 62], although there is no such criterion in
the method and in fact, it rarely produces a most parsimonious solution in our experience
(see Section 1.3.4). Phase [69] has also been explained in terms of the parsimony criterion
[22]. However, the complex details of its computation makes it hard to see explicitly how
the parsimony criterion has an influence. This makes it difficult to use any of these methods
to evaluate the effectiveness of the parsimony criterion as an objective function in solving
the HI problem.

In [38] we describe how to use integer linear programming to compute an HI solution that
minimizes the number of distinct haplotypes, i.e., it solves the Pure-Parsimony problem.
However, the worst-case running time increases exponentially with the problem size, so
the empirical issue is whether the approach is practical for data sets of current interest in
population-scale genomics. Additional ideas are presented in [38] to make this approach
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practical, allowing a comparison of the accuracy of Pure Parsimony solutions to the accuracy
of solutions obtained from inferral methods not explicitly based on the Pure-Parsimony
criterion. This is detailed in the next section.

1.4.2 A Conceptual Integer Programming Formulation

We begin by describing a conceptual integer-linear-programming solution to the pure-parsimony
problem. The solution would generally be impractical to use without additional improve-
ments. After describing this solution, we introduce two simple observations that make it
practical for data sets of current biological interest.

Let gi denote the ith genotype input vector, and suppose it has hi ambiguous sites.
There are 2hi−1 pairs of haplotypes that could have generated gi. We enumerate each one
of these pairs, and create one integer programming variable yi,j for each of the 2hi−1 pairs.
As we create these y variables, we take note of the haplotypes in the enumerated pairs.
Whenever a haplotype is enumerated that has not been seen before, we generate a new
integer programming variable xk for that haplotype. There will only be one x variable
generated for any given haplotype, regardless of how often it is seen in a genotype.

What are the linear programming constraints? We will describe with the following ex-
ample. For genotype gi = 02120 we enumerate the two haplotype pairs (00100, 01110) and
(01100, 00110), and generate the two variables yi,1 and yi,2 for these pairs. Assuming that
these four haplotypes have not been seen before, we generate the four variables x1, x2, x3, x4

for them. We create the constraint

yi,1 + yi,2 = 1

Since the variables can only be set to 0 or 1, this inequality says that in a solution, we
must select exactly one of the enumerated haplotype pairs as the resolution of genotype gi.
Which y variable in this constraint is set to 1 indicates which haplotype pair will be used
in the explanation of genotype gi.

Next, we create two constraints for each variable yi,j . In our example, these are:

yi,1 − x1 ≤ 0

yi,1 − x2 ≤ 0

yi,2 − x3 ≤ 0

yi,2 − x4 ≤ 0

The first constraint says that if we set yi,1 to 1, then we must also set x1 to 1. This
means that if we select the haplotype pair associated with variable yi,1 to explain gi, then
we must use the haplotype associated with variable x1, because that haplotype is one of
the pair of haplotypes associated with variable yi,1. The second constraint says the same
thing for the haplotype associated with variable x2.

These are the two types of constraints that are included in the integer programming
formulation. We include such constraints for each input genotype vector. If a genotype has
h ambiguous sites, then there will be exactly 2h + 1 constraints generated for it.

For the objective function, let X denote the set of all the x variables that are generated by
the entire set of genotypes. Recall, that there is one x variable for each distinct haplotype,
no matter how many times it occurs in the enumerated pairs. Then the objective function
is:
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Minimize
∑
x∈X

x

This function forces the x variables to be set so as to select the minimum possible number
of distinct haplotypes. Taken together, the objective function and the constraints, along
with the restriction that the variables can only be set to 0 or 1, specify an integer-linear-
programming formulation whose solution minimizes the number of distinct haplotypes used.
Thus, this formulation solves the “Pure-Parsimony” haplotype problem. This formulation
is called the “TIP formulation” in [38].

1.4.3 A More Practical Formulation

For many current data sets (50 or more individuals and 30 or more sites) the large number
of constraints generated in the above formulation make it impractical to solve the resulting
integer program. For that reason, additional ideas are required to make it practical.

The first idea is the following: if the haplotype pair for variable yi,j consists of two
haplotypes that are both part of no other haplotype pair, then there is no need to include
variable yi,j or the two x variables for the two haplotypes in the pair associated with yi,j

in the integer program. In this way, we create a “reduced” formulation by removing such y
and x variables. This formulation is called the “RTIP” formulation in [38].

If there is a genotype vector g such that all associated y variables are removed, then there
is an optimal solution to the original formulation where we arbitrarily choose a permitted
haplotype pair for g. Otherwise, there is an optimal solution to the original formulation that
does not set any of the removed x or y variables to 1. Hence, there is no loss in removing
them, and the reduced formulation will find the same solution that the original formulation
finds.

This reduced formulation is particularly effective because DNA sequences in populations
have generally undergone some amount of recombination, a process that creates two chimeric
sequences from two input sequences. Depending on the realized level of recombination in
the evolution of the sequences, the reduced formulation can be much smaller (fewer variables
and inequalities) than the original original formulation. The reason is that as the level of
recombination increases, the number of distinct haplotypes in the sample typically increases,
and in turn the genotypes become more heterogeneous. Therefore, more of the haplotypes
enumerated in the original formulation only appear in one haplotype pair. These “private”
haplotypes are removed in the reduced formulation. Smaller formulations generally allow
integer programming solution codes to run faster.

The reduced formulation preserves the optimal solution to the original formulation. How-
ever, if the reduced formulation is created by first creating the original formulation and then
removing variables and constraints, the work involved could still make this approach im-
practical. The following is a more efficient way to create the reduced formulation: let gi

be a genotype vector, and let Hi be the set of haplotypes that are associated with g1 in
the original integer programming formulation. Then for any pair of genotypes g1, g2, it is
easy to identify the haplotypes in H1 ∩ H2, and to generate them in time proportional to
m|H1 ∩ H2|, where m is the length of the genotype vector. Simply scan g1 and g2 left to
right; if a site occurs with a value of 1 in one haplotype and 0 in the other, then H1∩H2 = ∅;
if a site occurs with a 2 in one vector and a 0 or 1 in the other, then set that 2 to be equal
to the other value. Then if there are k remaining sites, where both g1 and g2 contain 2’s,
there are exactly 2k distinct haplotypes in H1 ∩H2, and we generate them by setting those
k sites to 0 or 1 in all possible ways. The time for this enumeration is proportional to
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m|H1∩H2|. Moreover, each generated haplotype in H1∩H2 specifies a haplotype pair that
will be included in the reduced formulation, for both g1 and g2.

Any x variable that is included in the reduced formulation must occur in an intersecting
set for some pair of genotypes, and every pair of haplotypes that should be associated with
a y variable must also be found while examining some pair of genotypes. Hence, the reduced
formulation can be produced very quickly if it is small.

1.4.4 Experimental Results

Experiments reported in [38] show that a Pure Parsimony solution for problem instances of
current interest can be computed efficiently in most cases. The practicality and accuracy
of the reduced formulation depend on the level of recombination in the data (the more
recombination, the more practical but less accurate is the method). We show in [38] that the
Pure-Parsimony approach is practical for genotype data of up to 30 sites and 50 individuals.
Up to moderate levels of recombination, 80 to 95 percent of the inferred haplotype pairs
are correct, and the solutions are generally found in several seconds to minutes, except for
the no-recombination case with 30 sites, where some solutions require a few hours.

When the recombination rate is low, Pure-Parsimony solutions were generally as accurate
as those obtained with the program Phase [69]. However, they become somewhat inferior
to Phase solutions when the recombination rate becomes large. Nonetheless, these Pure
Parsimony results are a validation of the genetic model implicit in the Pure-Parsimony
objective function, for a randomly picked solution would correctly resolve only a minuscule
fraction of the genotypes. It is conceivable that a program that adds heuristics to the
Pure Parsimony criterion would produce results that are competitive with programs such
as Phase.

1.4.5 Further Work on Pure Parsimony

The pure-parsimony criterion has also been examined in [72], where a branch-and-bound
method, instead of integer programming, was used to solve the problem. More theoretical
results on pure parsimony appear in [41, 49, 56, 57]. No experimental results on pure
parsimony are reported in those papers. The first two papers listed above also present an
integer linear programming formulation of the problem whose size grows polynomially with
the size of the input. This is in contrast with the approach in [38] where (in the worst case)
the size of the integer program can grow exponentially with the size of the input (although
in practice, the growth is more modest).

A Polynomial-size Integer Linear Programming (ILP) Formulation for Pure
Parsimony

A polynomial-size integer linear programming formulation was developed along with addi-
tional inequalities (cuts) that decrease the running time needed to solve the integer program
[10]. This formulation was also presented in [42] without the additional inequalities, and
without experimental results.

In this ILP formulation, for each genotype vector i, we create two binary variables (which
can take on values 0 or 1 only), y(2i− 1, j) and y(2i, j), for each site j in genotype vector
i. If site j in genotype i is homozygous with state 0, then we create the constraint:

y(2i− 1, j) + y(2i, j) = 0



Haplotype Inference 1-11

If site j in genotype i is homozygous with state 1, then we create:

y(2i− 1, j) + y(2i, j) = 2

If site j in genotype i is heterozygous, then we create:

y(2i− 1, j) + y(2i, j) = 1

For any genotype vector i, the states of the variables y(2i−1, j) and y(2i, j), for j from 1
to m, should define two haplotypes that explain genotype i. The above constraints ensure
that any solution to the ILP creates two haplotypes that explain each genotype.

We want to minimize the number of distinct haplotypes used, and the key issue is how
to set up constraints to do this. As a first step, let k and k′ < k be any two indices
between 1 and 2n, i.e., indices for the 2n haplotypes produced by a solution. We will refer
to “haplotype k” as a shortcut for “the haplotype indexed by k in the solution”. For each
(k′, k) pair, we create the variable d(k′, k), which we want to be set to 1 if (but not only if)
haplotype k′ is different from haplotype k. This is accomplished by creating the following
two constraints for each site j:

d(k′, k) ≥ y(k, j)− y(k′, j)

d(k′, k) ≥ y(k′, j)− y(k, j)

Clearly, d(k′, k) will be set to 1 if haplotypes k and k′ are different, since they will be
different if and only if they differ in at least one site j.

We next introduce the variable x(k), for each k from 1 to 2n, which we want to be set
to 1 in a solution, if (but not only if) haplotype k is distinct from all of haplotypes k′ < k.
This is achieved with the following constraint:

i−1∑
k′=1

d(k′, k)− i + 2 ≤ x(k)

To understand this constraint, note that if haplotype k is different from every haplotype
k′ < k, then

∑i−1
k′=1 d(k′, k) will be exactly i−1, and so

∑i−1
k′=1 d(k′, k)− i+2 will be exactly

one.
With the above constraints, a solution to this integer program specifies a pair of haplo-

types that explain the genotypes, where
∑2n

k=1 x(k) is greater than or equal to the number
of distinct haplotypes in the solution. Therefore, by using the objective function:

Minimize

2n∑
k=1

x(k),

any solution to this integer program will be a solution to the Pure Parsimony problem.
The reader can verify that the number of variables and constraints grows only polyno-

mially with n and m, rather than exponentially (in worst case) as in the TIP and RTIP
formulations.

No experimental results are given in [42], but extensive experiments were done in [10]
comparing the polynomial-size formulation with the earlier formulation in [38]. Perhaps
surprisingly, the exponential-size formulation did not always run slower than the polynomial-
size formulation, and there were many cases where the former formulation ran in seconds
while the latter formulation took hours (although there were cases where the opposite was
observed). Perhaps the reason is that smaller formulation has to computationally discover
necessary features of the optimal solution (such as the candidate haplotype pairs) that are
explicitly specified in the larger formulation.



1-12

Recent Contributions

More recently, a hybrid formulation that combines ideas from [38] and [10] was developed
and tested [11]. The result is an integer programming formulation that again only uses
polynomial space (similar to the formulation in [10]), but whose running time in practice is
closer to the running time observed with the RTIP formulation, although it is still generally
slower than that formulation. The hybrid formulation allows practical computation of
problem instances whose RTIP formulation is too large to fit into memory, and whose
running time with the formulation from [10] is excessive.

Finally, an approximation algorithm was developed and tested in [49] using Semidefinite
Programming Relaxation of an Integer Quadratic Programming formulation of the Pure
Parsimony problem. This method was shown to compare well in both speed and accuracy
with several other haplotyping methods when applied to simulated and real data sets.

1.5 Perfect Phylogeny Haplotyping

1.5.1 Introduction to Perfect Phylogeny Haplotyping

As noted earlier, the haplotype inference problem would be impossible to solve without some
implicit or explicit genetic assumptions about how DNA sequences evolve. An important
set of such assumptions are embodied in the population-genetic concept of a coalescent
[51, 70]. A coalescent is actually a stochastic process that provides a history of how
a set of sampled haplotypes in a population has evolved. The evolutionary history of
the haplotypes is represented as a directed, acyclic graph, where the lengths of the edges
represent the passage of time (in number of generations). In our problems, we ignore time,
so we are only concerned with the fact that the underlying history is represented by a
directed, acyclic graph. The key observation [51] is that “In the absence of recombination,
each sequence has a single ancestor in the previous generation.” Hence, if we trace back the
history of a single haplotype H from a given individual I, we see that haplotype H is a copy
of one of the haplotypes in one of the parents of individual I. It doesn’t matter that I had
two parents, or that each parent had two haplotypes. The backwards history of a single
haplotype in a single individual is a simple path, if there is no recombination. That means
the histories of two sampled haplotypes (looking backwards in time) from two individuals
merge at the most recent common ancestor of those two individuals.

There is one additional element of the basic coalescent model: the infinite-sites assump-
tion (see above). This amounts to implying that the m sites in the sequence of interest
are sparse relative to the mutation rate, so that in the time frame of interest at most one
mutation will have occurred at any site. Hence, the coalescent model of haplotype evolution
says that without recombination, the true evolutionary history of 2n haplotypes, one from
each of 2n individuals, can be displayed as a tree with 2n leaves, and where each of the m
sites labels exactly one edge of the tree.

More formally, if M is a set of binary sequences, and V is a binary sequence that will label
the root, the tree displaying the evolution of the haplotypes is called a perfect phylogeny
for M and V [33, 34]. It is a rooted tree T with exactly 2n leaves that obeys the following
properties:

1. The root of T is labeled with an m-length binary vector V , which represents the
“ancestral sequence”, i.e., the ancestral state of each of the m sites.

2. Each of the 2n rows labels exactly one leaf of T , and each leaf is labeled by one
row.
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3. Each of the m columns labels exactly one edge of T .
4. Every interior edge (one not touching a leaf) of T is labeled by at least one

column.
5. For any row i, the value M(i, j) is unequal to V (j) if and only if j labels an edge

on the unique path from the root to the leaf labeled i. Hence, that path, relative
to V , is a compact representation of row i.

Often we assume that V is the all-zero vector, but the above definition is more general.
An illustration of a perfect phylogeny and of its use in “association mapping” are pre-

sented in [2].
Part of the motivation for the perfect phylogeny model (i.e., coalescent without recombi-

nation) comes from recent observations [17, 71] of little or no evidence of recombination in
long segments of Human DNA, and the general belief that in human DNA sequences, most
SNPs are the result of a mutation that has occurred only once in human history [48].

Formally, the Perfect Phylogeny Haplotype (PPH) Problem is:

Given a set of genotypes, M , find a set of explaining haplotypes, M ′, which
defines a perfect phylogeny.

In the perfect phylogeny model, each genotype vector (from a single individual in a
sample of n individuals) was obtained from the mating of two of 2n haplotype vectors in an
(unknown) coalescent (or perfect phylogeny). In other words, the coalescent with 2n leaves
is the history of haplotypes in the parents of the n individuals whose genotypes have been
collected. Those 2n haplotypes are partitioned into pairs, each of which gives rise to one of
the n observed genotypes.

So, given a set S of n genotype vectors, we want to find a perfect phylogeny T , and a
pairing of the 2n leaves of T that explains S. In addition to efficiently finding one solution
to the PPH problem, we would like to determine if that is the unique solution, and if not,
we want to efficiently represent the set of all solutions, so that each one can be generated
efficiently.

1.5.2 Algorithms and Programs for the PPH Problem

The PPH problem was introduced and first solved in [37], where it was explained that after
one PPH solution is obtained, one can build an implicit representation of the set of all
PPH solutions in O(m) time. The algorithm given in [37] is based on reducing the PPH
problem to a well-studied problem in graph theory, called the graph-realization problem.
The theoretical running time of this initial approach is O(nmα(nm)), where α is the inverse
Ackerman function, usually taken to be a constant in practice. Hence, the worst case time
for the method is nearly linear in the size of the input, nm. The time for the reduction itself
is O(nm), and the graph-realization problem can be solved by several published methods.
In [37] we used a graph-realization algorithm (the Bixby-Wagner algorithm) [8] in order to
establish the near-linear time bound for the PPH problem. The Bixby-Wagner algorithm is
based on a general algorithm due to Löfgren [60], and runs in O(nmα(nm)) time. However,
the Bixby-Wagner algorithm is difficult to understand and to implement. Accordingly, we
implemented a reduction-based approach using a different solution to the graph-realization
problem [30]. The resulting program (called GPPH) [13] has a worst-case running time
of O(nm2). Recently, the original reduction-based approach was implemented [58] using a
Java implementation of the Bixby-Wagner method [63, 53].

A second program to solve the PPH problem (called DPPH) is based on deeper insights
into the combinatorial structure of the PPH problem, rather than on a reduction to graph-
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realization. The algorithm underlying DPPH is developed in [4, 5]. The running time
for the algorithm and program is also O(nm2), and the algorithm produces a graph that
represents the set of all solutions in a simple way. A paper [75] has insights similar to those
in [4, 5], but does not exploit them to develop an explicit algorithm for solving the PPH
problem.

A third algorithm to solve the PPH problem was developed in [26], and it has been
implemented in a program called BPPH. That algorithm and program also have worst-case
running time of O(nm2), and they can be used to find and represent all the solutions.

A Linear-Time Solution

Recently, we [21] developed an algorithm for the PPH problem that runs in O(nm) time,
i.e., in linear time. The program based on this algorithm is called LPPH. The results of
empirical testing of the first three programs mentioned above can be found in [12]. Some
comparisons of LPPH to DPPH (the fastest of the first three) are shown in [21]. LPPH
is significantly faster than DPPH when the number of sites is large. For example, in tests
with n = 1000 and m = 2000, DPPH ran for an average of 467 seconds, while LPPH
ran for an average of 1.89 seconds. All four of the PPH programs can be obtained at
wwwcsif.cs.ucdavis.edu/~gusfield/.

The conceptual and practical value of a linear-time solution can be significant. Although
most current inference problems involve under one hundred SNPs, where the differences in
running time between the programs are not of great practical significance, there are regions
of the human genome of length up to several hundred kilobases where the SNP states are
highly correlated. Such high correlation is called “linkage disequilibrium” (LD), and high
LD suggests that little or no recombination has occurred in those regions. Further, there
is very little known about haplotype structure in populations of most organisms, so it is
too early to know the full range of direct application of this algorithm to PPH problems
involving long sequences (see [12] for a more complete discussion).

Faster algorithms are of practical value when the PPH problem is repeatedly solved in
the inner-loop of an algorithm. This occurs in the inference of haplotype pairs affected by
recombination [12], and when searching for recombination hotspots and low-recombination
blocks given genotype data [75]. In both of these cases, from every SNP site, one finds the
longest interval starting at that site for which there is a PPH solution. When applied on a
genomic scale (as is anticipated), even a ten-fold increase in speed is important. Moreover,
in some applications, one may need to examine subsets of sites for which there is a PPH
solution. This is partly due to small departures from the perfect phylogeny model. It is
also motivated by observations that the sites in haplotypes need not be contiguous, but
may be interlaced with other sites that are not part of the haplotype. The lengths of these
dispersed haplotype-blocks are not known. When solving the PPH problem repeatedly on
a large number of subsets of sites, increased efficiency in the inner loop will be important,
even if each subset is relatively small.

The High Level Idea Behind the Linear-Time Solution

In obtaining the linear-time solution [21], we use the general method of Löfgren, but
we exploited properties of the PPH problem to obtain a specialized version that is simpler to
implement than the Bixby-Wagner graph-realization method. Although there is no explicit
mention of the graph-realization problem in [21], in order to develop the intuition behind
the method, it is useful to review a bit of the Whitney-Löfgren theory of graph-realization,
specialized to the PPH problem.

Let M be an instance of the PPH problem, and let T be a perfect phylogeny that solves
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the PPH problem for M . Each leaf of T is labeled by one row of M , and each row of M
labels two distinct leaves of T . We define a three-partition of the edges of T to be a partition
of the edges of T into three connected, directed subtrees T1, T2, T3 of T , such that T1 is
rooted at the root of T , and T2 and T3 are rooted at distinct nodes, u, v (respectively) in
T1. Note T1 might consist only of the root node of T , and that the nodes of T are not
partitioned between the three subtrees, and that either, but not both, of u or v might be
the root of T . A three-partition is legal if the set of labels of the leaves in T2 is identical to
the set of labels of the leaves in T3. Given a legal three-partition, we define a legal flip in
T of T2 and T3 as the following operation: disconnect trees T2 and T3 from T , and merge
node u in T2 with node v in T1, and merge node v in T3 with node u in T1.

The application of Whitney’s theorem [74] to the PPH problem implies that every PPH
solution for M can be obtained by a series of legal flips, starting from any PPH solution
T , and every tree T ′ created in the series is also a PPH solution for M . Moreover, the
number of needed flips is bounded by the number of edges of T . This theorem is the basis
for Löfgren’s graph-realization algorithm, and the version of the theorem above specializes
to a version of Löfgren’s algorithm that solves the PPH problem. We will describe this
approach for the case that M only contains entries that are 0 and 2, i.e., no 1 entries. The
effect of having no 1 entries, is that for every row i, and every PPH solution T , the path in
T between the two leaves labeled i must go through the root of T .

We now describe at a high level the approach to solving the PPH problem based on
Löfgren’s general method for solving the graph-realization problem. Let T (k) be a solution
to the PPH problem restricted to the first k rows of M . Let OLD(k + 1) be the set of
sites that have value 2 in row k + 1 and have value 2 in some row 1 through k. Each site
in OLD(k + 1) is an “old” site, and already labels an edge in T (k). Let N(k + 1) be the
remaining set of sites in row k + 1, i.e., the “new” sites. Let M ′(k + 1) be the matrix made
up of the first k rows of M , together with a new row created from row k + 1 by setting to 0
all the entries in N(k + 1). Whitney’s theorem implies that if there is a PPH solution for
M ′(k+1), then a PPH solution for M ′(k+1) can be obtained by a series of legal flips (each
relative to a three-partition) starting from T (k). Löfgren’s algorithm finds such a solution
T ′(k + 1) for M ′(k + 1) by finding an appropriate series of flips. Moreover, there is a series
of flips that can find a particular solution T ′(k + 1), so that the sites in N(k + 1) can be
added in a single path, at the end of one of the two paths in T ′(k +1) that contain the sites
of OLD(k + 1).

Additional ideas and an appropriate data structure are needed to make this approach
efficient. A key idea is that whenever a flip is forced, in finding a solution T ′(k + 1), we
should never allow that flip to be done in the opposite direction, and so all the edges incident
with the nodes u and v (defined in the three-partition) can be “fixed”, thus specifying more
of the PPH solution for M (if there is a solution). At each point in the execution of
the algorithm, a data structure, called a “shadow tree” implicitly represents all possible
solutions to the problem seen so far. As the algorithm proceeds, more of the solution
becomes fixed, and the shadow tree at the end of the algorithm represents all solutions to
the PPH problem.

1.5.3 Uniqueness of the Solution: A Phase Transition

For any given set of genotypes, it is possible that there will be more than one PPH solution.
It is reasonable to ask how many individuals should be in the sample so that the solution is
very likely to be unique? To answer this question, we did several experiments that determine
the frequency of a unique PPH solution for various numbers of sites and of genotypes [12].
Intuitively, as the ratio of genotypes to sites increases, one expects that the frequency of
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unique solutions should increase. This is observed in practice, and the striking observation
is that there is a phase transition in the frequency of unique solutions as the number of
individuals grows. In particular, the frequency of unique solutions is close to zero for a
small number of individuals, and then jumps to over 90% with the addition of just a few
more individuals. In our experiments, the phase transition occurs when the number of
individuals is around twenty-five. The phase transition was also found in experiments done
by T. Barzuza and I. Pe’er [7], although they observed the transition with somewhat fewer
individuals than in our experiments. These results have positive practical implications,
since they indicate that a surprisingly small number of individuals is needed before a unique
solution is likely.

1.5.4 Related Models, Results, and Algorithms

The PPH problem has become well-known (see the surveys [9, 39, 41, 42]), and there is
now a growing literature on extensions, modifications or specializations of the original PPH
problem [3, 6, 19, 20, 24, 26, 43, 46, 54], or on the PPH problem when the data or solutions
are assumed to have some special form [31, 32, 44]. Some of these papers give methods
that run in linear time, but only work for special cases of the PPH problem [31, 32], or are
only correct with high probability (under some model) [19, 20]. Some of the papers discuss
problems of incomplete or incorrect data, some develop complexity results that limit the
extent that one can expect to obtain polynomial-time methods, and some consider different
biological contexts that change some of the details of the problem. We will now discuss
some of these results.

Papers by [31, 54] showed that the the PPH problem is NP-complete when the data are
incomplete. It was also established in [3] that the problem of finding a PPH solution that
minimizes the number of distinct haplotypes it uses is NP-hard. It was also established
there that the O(nm2)-time solutions to the PPH problem in [5, 26] are unlikely to be
implementable in O(nm) time, even though the same paper shows that if either method
could be implemented in O(nm + m2) time, then the algorithm could be implemented in
O(nm) time. The PPH solution in [5] runs in O(nm) time, except for an initial computation
that runs in O(nm2), time but only produces output of size O(m2). So it seemed attractive
to see if that initial computation could be implemented to run in O(m2) time. The method
in [26] contains the same initial computation, and although no explicit algorithm is presented
in [75], the ideas there are based on this initial computation. However, we showed in [3] that
the initial computational task is equivalent to the problem of boolean matrix multiplication.
That implies that if the computation could be implemented to run in O(nm) time, then
two n by n boolean matrices could be multiplied in O(n2) time, which is significantly faster
than is currently possible.

In [46], He and Zelikovsky used linear algebra to find redundancies that can be removed to
reduce the number of sites in an instance of the HI problem. This approach is not guaranteed
to preserve the set of solutions, but the typical loss of accuracy can vary depending on which
specific haplotyping method is used. When tested along with the program DPPH (solving
the PPH problem), the results in [46] showed little loss of accuracy, and a large increase in
speed.

In contrast to papers that focus primarily on algorithmic issues related to the PPH
problem, several papers discuss variants of the original PPH problem that arise in different
biological contexts (although the papers also have other algorithmic results). The papers
[31, 32] considered the PPH problem where the input is assumed to have a row where all
the entries have value two. That is, there must be a pair of haplotypes in the solution in
which every site is heterozygous. Such a pair is called a “yin-yang” haplotype, and it is the
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common occurrence of such haplotype pairs [77] that motivates the assumption that the
input has an all-2 row. Hence, in any solution T to a PPH problem of this type, there must
be two paths from the root of T that contain all of the sites. Note that there may be rows
that are not all-2, but since a solution T must have two directed paths from the root that
contain all of the sites, any other haplotype in the solution must be defined by a path in
T that forms some initial portion of one of those two paths. Thus, this variant of the PPH
problem is called the “Perfect Phylogeny Path Haplotyping” (PPPH) problem. The method
in [31] is simple and runs in linear time. The PPPH problem may be related to the classical
“consecutive ones” problem. Part of the intuition for this is that the graph-realization
problem, which can be viewed as the basis for the PPH problem, is a generalization of the
consecutive-ones problem, where the “ones” have to form consecutive intervals in a tree
instead of on the line. But the PPPH problem is the PPH problem when restricted to a
single path, which can be embedded on a line.

The XOR PPH problem

The “XOR PPH problem”, in which the input genotype vector for an individual is the
XOR (exclusive OR) of the two haplotype (0-1) vectors for the individual, is discussed
in [6]. This means that the genotype vector for an individual indicates whether a site is
heterozygous or homozygous, but it does not indicate the specific state of a homozgous site.
Genotype vectors of this type may be cheaper and easier to obtain than those that indicate
the specific state at every homozygous site. Given a set of n such XOR genotypes, the
XOR PPH problem is to find a perfect phylogeny T with 2n leaves, and a pairing of the
leaf sequences of T , so that the n input genotype vectors result from taking the XOR of
each of the n paired leaf sequences. The main result in [6] is that this problem can also be
reduced to an instance of the graph-realization problem, as in the original PPH problem,
and hence can be solved in O(α(nm)nm) time in theory. As in the PPH problem, initial
implementations were based on using a slower and simpler solution to the graph-realization
problem, resulting in an O(nm2)-time algorithm for the XOR PPH problem. Just as in
the original PPH problem, it is important to assess how many individuals are needed in
the sample in order to find a PPH solution (if there is one) that is likely to be unique.
Simulations were done in [6] to compare the number of needed individuals in the two PPH
formulations, and the empirical result is that a high probability of uniqueness is obtained
for XOR genotype input using only a few more individuals than with the full PPH genotype
input.

There is another interesting and potentially important result in [6] concerning the PPH
model and the so-called Tag SNPs in “haplotype blocks”. Several recent studies have found
long regions in human DNA, called haplotype blocks, where high LD is observed (see [71]
for a review). There are other definitions of haplotype blocks that are not explicitly based
on LD, such as defining a block to be a region of sufficient length for which only a small
number of haplotypes are found amoung most individuals. (Different instantiations of the
words “sufficient”, “most”, and “few” lead to different precise block definitions and to
different methods to recognize blocks or to partition a sequence into blocks.) No matter
what the causal basis is for haplotype blocks, they can be exploited to make large-scale
genotyping more practical. The high association between the states of SNPs sites inside a
single haplotype block, makes it possible to identify a small number of SNP sites in a set of
haplotypes, whose states act as a “label” for all (or most) of the haplotypes in the sample.
In other words, there is a set S of SNP sites, such that for any individual I in the sample,
the (0-1) states of the haplotype SNP sites in S for individual I, allows one to determine
the states of the other SNP sites for individual I. A SNP site in S is called a “Tag SNP”.
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Given the haplotypes in a sample, a smallest set of Tag SNPs can be found by solving
an instance of a “minimal test-set problem”, which is easily framed as a set cover problem.
The minimal test-set problem is NP-hard, but is solvable in practice for current data sets
(up to a few hundred individuals and one hundred sites). The advantage of knowing a small
set of Tag SNPs is clear; if the haplotypes in unstudied individuals are like those in the
sampled individuals, one would need to look only at the sites in S to infer the haplotype
pairs of the unstudied individuals.

The definition of a Tag SNP has been for haplotypes, but it is genotypes that will be
determined in large screens. Can one find a subset of sites in the genotypes of the initial
sample, so that for any individual in the sample, the values at those genotypes determine the
two underlying haplotypes of the individual? We can define and determine “Tag genotype
SNPs” as a set of sites that determine the genotype values at the other sites in the studied
sample. But is a set S of Tag genotype SNPs also a set of “Tag haplotype SNPs” for
that underlying haplotype solution in the initial sample? If so, by knowing the genotype
values at S, one would know all the genotype values for the individual, and also know the
underlying haplotype pair for that individual. It is shown in [6] that a set of Tag genotype
SNPs is not always a set of Tag haplotype SNPs, but when the data have a PPH solution
(or a XOR PPH solution if only XOR genotypes are known) it is true that a set of Tag
genotype SNPs is also a set of Tag haplotype SNPs. In this case, genotype data in large
screens are as useful as haplotype data. This is potentially a very important result.

1.5.5 Near-Perfect Phylogeny

One modification of the PPH problem, called the “imperfect” or “near-perfect” or “almost-
perfect” phylogeny haplotyping problem deserves particular attention. This approach was
developed in three papers by E. Eskin, E. Halperin, and R.M. Karp [25, 26, 43], and is
implemented in a program called HAP [43]. HAP was recently used to infer haplotype pairs
and to predict haplotype-blocks, in the largest-yet published study of the patterns of SNP
variation in human populations [48].

The main motivation for the near-perfect phylogeny model is the observation that in
certain well-studied data sets (e.g., [17]), the common haplotypes (the ones most frequently
seen in the sample) fit the perfect phylogeny model, but the full set of haplotypes in the sam-
ple do not. Halperin and Eskin [43] state that “infrequent haplotypes cause the majority of
the conflicts with the perfect phylogeny model”. They derive this conclusion from studying
the data in [17], where very few conflicts remain after the removal of haplotypes that occur
in fewer than 5% of the sample, and no conflicts remain after the removal of haplotypes
that occur in fewer than 10% of the sample. Thus, the haplotypes fit the perfect-phylogeny
model after modifications are made to the data, and are said to fit a “near-perfect-” or
“almost-perfect-” phylogeny model.

Program HAP uses this observation to perform haplotype inference in fixed-length inter-
vals of the genotype data, inferring haplotype pairs that fit a perfect phylogeny for a subset
of the genotypes. These haplotypes are expected to be the common haplotypes in the
population. It then uses these haplotypes to infer haplotype pairs for the remaining geno-
types, which may include genotypes initially removed due to missing data. Missing values
in a genotype are inferred from the common haplotypes by a maximum likelihood model,
effectively choosing SNP values that best match the corresponding SNPs in the common
haplotypes.

We now discuss how HAP finds haplotype pairs for the common haplotypes in a fixed
interval. Program HAP derives from an algorithm [25] that solves the original PPH problem.
The specific ways that HAP modifies that algorithm, and the ways that it modifies the data
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as the algorithm proceeds, are not completely specified (HAP contains well over 10,000 lines
of code). But the general ideas have been articulated as follows [43]. The PPH algorithm
in [25] builds a PPH solution from the root of the tree downward, examining each row
of the input in turn. When examining a row, it may learn that in all PPH solutions, a
specific pair of sites must be together on a directed path from the root, or it may learn the
opposite, that they cannot be together on any directed path from the root. Alternatively,
the examination of a row may indicate that there is no PPH solution possible. Program
HAP follows the general outline of this algorithm, but instead of acting under the influence
of a single row, it looks at additional rows to see how many rows support the same conclusion
(for example, that the edge containing one of the sites should be made an ancestor of the
edge containing the other). If only a small number of rows support that conclusion, and the
other rows support an alternative conclusion, then the minority action is not taken and the
(few) rows supporting the action can be removed (this detail is not explicitly stated in [43]).
In this way, a perfect phylogeny is created for a subset of the rows. One of the features of
the algorithm in [25] (and other algorithms for the PPH problem) is that it produces an
implicit representation of the set of all PPH solutions. In HAP, that representation is used
to enumerate all the PPH solutions (for the rows not removed) in order to choose one that
best fits the Hardy-Weinberg equilibrium, i.e., that the observed genotypes were created by
random mating of the inferred haplotypes.

In addition to the assumption of random mating, the implicit model of haplotype evo-
lution embodied in HAP is that the rare haplotypes are created by recent recombinations
of a few common haplotypes, or by recent mutations of common haplotypes. That view of
haplotype evolution is articulated in [23, 66]. The near-perfect phylogeny model goes one
step further, by asserting that the common haplotypes fit a perfect-phylogeny model.

We consider the observation in [43] that well-studied data nearly fit the perfect phylogeny
model, to be a validation of the original PPH idea. The strict PPH model may be overly-
idealized, or too brittle to handle errors in real data, but it is valuable to have a precisely-
specified model that leads to an efficiently-solved computational problem that can be used in
the core of other programs (such as HAP) to handle more complex (and messier) real-world
data.

1.6 A Brief Discussion of Statistical Methods

Much of the work described above has been carried out by computer scientists and/or with
the methods used by computer scientists. A number of other important approaches to
the problem of haplotype inference have originated mainly in the research community of
population geneticists and statisticians interested in the assessment and analysis of genetic
variation.

Of central historical and scientific note in this regard is the use of maximum likelihood to
estimate haplotype frequencies and to infer haplotype pairs. It is straightforward to write
down the likelihood function associated with any given sample of individuals as long as
one makes an assumption about the process by which mating occurs within the population.
The standard and usually reasonable assumption in practice is that there is a process of
random mating among individuals. Given this assumption, one can then derive an explicit
likelihood function and the goal is to determine its maximum value [73]. This value will yield
estimates of the haplotype frequencies underlying the observed genotype frequencies. Given
the haplotype frequencies, one can then determine the most probable pair of haplotypes
that underlies any given ambiguous genotype. The main problem in practice then is the
derivation of the maximum value of the likelihood function.
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For two SNP sites, one can analytically derive the maximum value [65]. This fact has long
been known but unfortunately, this approach has almost never been exploited as a means of
solution for this important case (exceptions are [18, 76]). Instead, for this case and for the
m-site case, the method of expectation-maximization (EM) has been used [27, 45, 61, 67].
The use of this numerical approach to determine the maximum value of the likelihood
function has both positive and negative consequences.

On the one hand, it allows the estimation of haplotype frequencies for data sets for
which there are few, if any, alternative estimation approaches available. The importance
of this can hardly be overestimated. On the other hand, the advantage of a numerical
method such as EM comes at the price of yielding only limited information about the
overall “dimensionality” of the estimation problem. So, for example, typical use of the EM
algorithm does not reveal whether there are multiple peaks on the likelihood surface or
whether the surface around a peak is flat or steep. Such information has obvious important
implications in terms of the confidence one has in any given result stemming from the
application of EM. Examples are shown in Orzack et al. [65] of two-site genotype data sets
for which the EM algorithm yields misleading results.

At least in the case of two sites, we recommend use of the analytical method presented
in [65]. For data sets with more than two sites, the EM approach is certainly one that
should be considered, especially if one uses it in such a way that the topography of the
likelihood surface is at least partially described. The simple way of doing this is by starting
the algorithm with many different initial estimates of the unknown likelihood frequencies.
If all such different estimates result in the same value of the likelihood function then one can
have more confidence that at least there is just one peak. It is not clear with this (or any
other method, see below) how to proceed if one has multiple peaks, but at least knowing of
their existence is better than proceeding in ignorance.

The likelihood approach can be viewed as a special case of a Bayesian-inference problem.
In this case, one has a flat prior, implying that no one prior estimate of haplotype frequen-
cies is better than any other. In the last five years, a number of alternative approaches
have been developed in which more informative prior information is incorporated into the
estimation procedure, so as to get better estimates of the unknown haplotype frequencies
and/or haplotype pairs. Of note in this regard are the programs called Phase [69] and
Haplotyper [62]. Both rely on the use of a more-or-less biologically-informed prior. In the
case of Phase, this prior is derived from the infinite-sites model and to this extent, it is a
plausible prior to use for many (but not all) data sets. The Gibbs sampler is then used
to calculate the posterior distribution from which one can derive estimates of haplotype
frequencies and infer haplotype pairs. Further elaboration and discussion of this approach
can be found in [59, 68].

In contrast, the other Bayesian method, Haplotyper, uses a prior that is not derived from
an explicit population-genetic model, although it is consistent with a model of inheritance
in which sequences of parents and offspring are potentially independent of one another [68].
The Dirichlet distribution is used here as the sampling distribution. The Gibbs sampler is
also used to calculate the posterior distribution.

As noted above, what distinguishes these methods from the EM method is the presence
of a more-or-less more meaningful prior (as compared to the uniform prior). What all of
these methods have in common is the use of a numerical method to derive solutions, i.e.,
estimates of haplotype frequencies and predictions of haplotype pairs. In addition, all of
these calculations are stochastic in the sense that one almost certainly starts each execution
with different initial haplotype frequencies. To this extent, the concern is that the reliability
of results derived from any one execution is uncertain. This problem has been recognized
by the creators of some of these programs (e.g, [69]) but the resulting implications for how
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these programs should be used have not been explored. So, typical analyses based on these
methods have involved a single execution. How meaningful the associated results are is
very unclear; at the very least, it is easy to find genotypic configurations for which different
executions (of any given method, such as Phase, Haplotyper or Clark’s method) can result
in very different estimates of haplotype frequencies (see [65]).

The main problem here is not the discovery of alternative solutions for any given data set.
The only requirement is sufficient computing power. Several thousand executions of even
the most time-intensive methods (e.g., Phase) that are presently available can be achieved in
a few days on the fastest available microprocessors. Accordingly, the central and unresolved
problem is what one can make of the possible multiple solutions that one may find for any
given data set. One possibility is the use of consensus, just as it was applied in the analysis
of multiple solutions stemming from the rule-based algorithms such as Clark’s method (as
described in Section 1.3.4). Consensus has also been applied in [28]. It is clear that there
is great promise to the consensus approach and it may prove widely useful. However, this
remains to be seen and additional applications and theoretical analysis are needed. Of
course, in any given instance, multiple executions of an inference program may result in the
same solution. Such was the case for several thousand Phase analyses of the APOE data set
described above (e.g., [64]). However, how typical such monomorphism is remains unknown.
Given present evidence and the black-box nature of present stochastic inference methods, we
strongly caution against an expectation that the results of any method should be regarded
as “true” even if multiple executions result in the same solution. Such confidence can come
only from improved understanding of the performance of the algorithms and especially from
analyses in which the accuracy of any given method is assessed by a comparison of inferred
and real haplotype pairs.

1.7 Going Forward

Our hope is that this review provides a meaningful and stimulating assessment of the
present state of the biologically important problem of haplotype inference. While impor-
tant progress has been made, it is clear that there are substantial questions and issues to
be resolved. We hope and expect that further progress will come from the separate and
combined efforts of biologists, computer scientists, and statisticians. The interdisciplinary
nature of this research effort is testimony to the remarkable state of present research in
bioinformatics.
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