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Abstract
mutations in DNA sequences are responsible for some genetic diseases. The most common mu-
tation is the one that involves only a single nucleotide of the DNA sequence, which is called a
single nucleotide polymorphism (SNP). As a consequence, computing a complete map of all SNPs

The investigation of genetic differences among humans has given evidence that

occurring in the human populations is one of the primary goals of recent studies in human ge-
nomics. The construction of such a map requires to determine the DNA sequences that from all
chromosomes. In diploid organisms like humans, each chromosome consists of two sequences called
haplotypes. Distinguishing the information contained in both haplotypes when analyzing chromo-
some sequences poses several new computational issues which collectively form a new emerging
topic of Computational Biology known as Haplotyping.

This paper is a comprehensive study of some new combinatorial approaches proposed in this
research area and it mainly focuses on the formulations and algorithmic solutions of some basic
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biological problems. Three statistical approaches are briefly discussed at the end of the paper.

Keywords
1 Introduction

The completion of the Human Genome
project'? has resulted in a draft map of the DNA
sequence (which may be thought of as a string over
the alphabet {A, C, G, T}) present in each human
being. At this point one of the main topics of re-
search in genomics is determining the relevance of
all mutations as causes of some genetic diseases.

Mutation in DNA is the principle factor that
is responsible for the phenotypic differences among
human beings, and SNPs (single nucleotide poly-
morphisms) are the most common mutations,
hence it is fundamental to complete a map of all
SNPs in the human population. For this purpose
an SNP is defined as a position in a chromosome
where each one of two (or more) specific nucleotides
are observed in at least 10% of the population[].
The nucleotides involved in an SNP are called alle-
les. It has been observed that for almost all SNPs
only two different alleles are present, in such a case
the SNP is said biallelic, otherwise the SNP is said

multiallelic. In this survey we will consider exclu-

bioinformatics, combinatorial algorithms, haplotypes

sively biallelic SNPs.
In diploid organisms, such as humans, each ch-

romosome is made of two distinct copies and each
copy is called a haplotype. Tt is known that exactly
one haplotype is inherited from the father and the
other is from the mother. More precisely, in the
absence of recombinations events, each haplotype
in a child is identical to one of the two haplotypes
of each parent. Whenever recombinations occur,
a haplotype of the child may consists of portions
of both haplotypes of a parent. Recent studies(*5!
show the block structure in human chromosomes
which implies that it is possible to partition a chro-
mosome into blocks where no (or only a few) recom-
binations have occurred within each block. This
observation justifies the fact that different formu-
lations, with or without recombinations, of the bio-
logical problem of completing SNP haplotype maps
make sense. Furthermore, results in [4, 5] also show
that the SNPs within each block induce only a few
distinct common haplotypes in the majority of the
population, even though the theoretical number of
different haplotypes for a block containing n SNPs

*Jing Li is supported by the NSF of USA under Grant No.CCR-9988353.
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is exponential in n. The above facts make it inter-
esting to build an SNP haplotype map that consists
of the information of haplotype block structure,
common haplotypes and their frequencies which,
hopefully, could be used to correlate the common
haplotypes with common diseases in gene mapping.

Computing a haplotype map requires to deter-
mine the possible SNPs combinations that are com-
mon in a population, hence it is necessary to ana-
lyze data derived by a large scale SNPs screening of
single haplotypes in a population. Unfortunately
even the most recent technologies are too expen-
sive for large scale analysis or cannot provide good
haplotype data from diploid organisms of a large
population. Indeed, experimental data only pro-
vide the genotype for each individual at each SNP
site on the chromosome, which is the combined in-
formation of the two alleles. For example we are
able to know that an SNP occurs at a certain site,
and that the two alleles occurring are A and T, but
we are not able to determine to which haplotype
the A belongs.

This paper focuses on presenting, in a compu-
tational framework, some combinatorial problems
arising from the following two basic biological is-
sues:

1) to infer haplotypes from genotypes;

2) to infer haplotypes from DNA sequence frag-

ments.

The first problem basically consists of exam-
ining the genotypes from an entire population in
order to derive the correct haplotypes. Different
computational problems may be defined depending
on the fact that recombinations are allowed or for-
bidden and on the fact that some parental relations
among the individuals are known or not.

The second biological problem arises in DNA
sequencing, where some fragments of two haplo-
types are known, and it is desired to compute both
haplotypes in their complete form (i.e., the whole
sequences).

This paper is organized as follows. In Section
2, some preliminary definitions and notations used
in haplotype inference are given. In Section 3 we
introduce the problem of inferring haplotypes in a
population, firstly by discussing such problem in a
general framework in Subsection 3.1 and then ex-
ploiting a natural biological property in Subsection
3.2. The problem of haplotype inference given a
pedigree is treated in Section 4. In Section 5 some
of the recent results regarding the reconstruction
of haplotypes from DNA fragments are presented.
Finally, Section 6 aims to give the reader some ref-
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erences regarding the use of statistical methods for
the haplotyping problem.

2 Preliminary Definitions

We have already pointed out in the introduc-
tion that we will restrict ourselves to biallelic SNPs.
Without loss of generality we can assume that the
values of the two involved alleles of each SNP are
always 0 or 1. Since the SNPs are located sequen-
tially on a chromosome, a haplotype of length m is
a vector {(ay,...,a,) over {0,1}", where each po-
sition i is also called a site or a locus. A genotype
vector, or simply genotype, represents two haplo-
types as a sequence of unordered pairs over the set
{0,1}. Each pair represents the nucleotides in a
given site, and since the pairs are unordered we
are not able to determine the two haplotypes from
the genotype alone. For example two haplotypes
of length 3 are (0,1,1) and (1,0,1) which are com-
bined into the genotype ((0,1),(0,1),(1,1)).

Whenever a pair is made of two identical val-
ues, then the SNP site is homozygous, otherwise it
is heterozygous. Clearly, by the assumption on the
values of the alleles, the pair for a homozygous site
is (0, 0) or (1, 1), while the pair for an heterozy-
gous site is (0, 1). Hence a compact representation
of the genotype consists of a vector over the al-
phabet {1,0,?7}, where the first two symbols are
used if the site is homozygous, and a ? encodes a
heterozygous site. For example, the compact rep-
resentation of the genotype ((0,1),(1,0),(1,1)) is
therefore (7,7,1).

Given a genotype g = (g1,92,--.,9m), then a
resolution of g is a pair (h, k) of haplotypes, where
h={(h1,ha,...,hp) and k = (k1, ks, ..., kn), such
that h; = k; = g; if g; ;é ? and h“kl S {0,1},
h; # k; if g; =7. When the above conditions hold
we also say that (h, k) resolves g. Given a genotype
g and a haplotype h, h is said compatible with g if
and only if there exists a haplotype h’' such that
(h,h') is a resolution of g; in such case the haplo-
type h' is called the realization of g by h, and is
denoted by R(g,h). Given a genotype g (a haplo-
type h, respectively), let us denote by g[i] (h[i]) the
element of g at site 4.

Please notice that, given a genotype g and a
haplotype h, there exists exactly one haplotype
R(g, h) such that (h, R(g,h)) resolves g. Comput-
ing R(g,h) is straightforward; in fact for each po-
sition ¢, where g[i] # ?, R(g, h)[i] = h[i], otherwise
R(g,h)[7] = 1 — h[i]. The general problem of in-
ferring haplotypes from genotypes can be stated as
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follows.

Problem 1 (HI). (Haplotype Inference Prob-
lem)

Input: A set G = {g1,...,9n} of genotypes.

Output: For each genotype g € G, a pair (h, k)
of haplotypes resolving g.

The HI problem stated before is actually a
metaproblem, in the following sections we will an-
alyze some of the formulations of the general prob-
lem that have been proposed in literature.

3 Inferring Haplotype in a Population

Recombination events make a number of prob-
lems harder, but experimental data show that hu-
man chromosomes can be partitioned into large re-
gions (usually called blocks), where no or few re-
combinations could occur within each block. By
definition of a block as a portion of the chromo-
some where there are few SNPs that account for
the differences in the individuals, when we restrict
ourselves to the analysis of a specific block in the
population, only a relatively small number of dis-
tinct haplotypes can be found. The above observa-
tions justify some simplifying assumptions that are
present in a number of models for inferring haplo-
types from genotypes:

e haplotypes consist only of certain portions of
the chromosomes or SNP sites!®:

e only a block is considered, consequently no
recombinations are allowed!”8!.

The approaches described in Subsections 3.1
and 3.2 make use of these two assumptions.
Clearly, exploiting those assumptions depends on
a feasible solution to the computational problem
of partitioning chromosomes into blocks. The ap-
proach proposed in [8] and in [9] faces the problem
by computing a partition of the chromosome mini-
mizing the total number of regions or blocks, where
each block induces at most a fixed number of dis-
tinct haplotypes in the population. This compu-
tational problem and other related issues are dis-
cussed in [9, 10], where efficient algorithms have
been proposed.

When we consider the haplotype inference prob-
lem, the alleles at each site ¢ of an individual con-
sist of exactly one allele from each of his parents in
the corresponding sites: this behavior is known as
Mendelian Law, see Fig.1. When no recombination
occurs, each of the two haplotype copies is equal
to one of the haplotype copies of its parents, that
is all alleles of a haplotype derives from the same
haplotype copy of a parent.

If, on the contrary, recombinations occur, then
a haplotype can consist of alleles coming from two
haplotypes of the same parent. By Mendelian law,
the consequence is that the given haplotype derives
from two grandparents of the individual. Thus, the
parental and grandparental sources of a allele are
the basic information to be used to determine and
measure recombinations.

Father Mother
1B 1D
2B 2D
3B 3D
4B 4D

Child

Fig.1. An example of recombination.

Fig.1 shows a recombination event. A recom-
bination occurs between the second locus and the
third locus in the left (paternal) haplotype (the
haplotype 1A, 2A, 3B, 4B) of the child, since under
Mendelian Law, the alleles at the first two loci are
inherited from the left (paternal) haplotype of the
father while the alleles at the last two loci are in-
herited from the right (maternal) haplotype of the
father. Note that no recombination occurs in the
right (maternal) haplotype (the haplotype 1D, 2D,
3D, 4D) of the child, since it is equal to the right
(maternal) haplotype of the mother. The num-
ber of recombination events in an individual is the
total number of such switches of the grandparent
source occurring in its haplotypes. In the example
of Fig.1, the number of recombinations is one.

3.1 The Inference Problem: A General
Rule

Various methods to infer haplotypes from geno-
type data have been proposed. Among them the
inference method proposed in [11] and later largely
discussed in [12] deserves our interest since it is the
first approach that points out some basic compu-
tational issues related to the haplotype inference
problem under a general inference rule.

The input data of the inference method consists
of n individuals and an m-site genotype for each in-
dividual. The expected output for each individual
genotype is a haplotype pair, among 2*~! different
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possibilities (where k is the number of heterozy-
gous sites), that resolves the original genotype of
the individual.

In [11] a parsimonious principle has been used
to formalize the HI problem. Such principle has
been suggested by empirically observing that a
valid solution is usually the one that resolves the
largest number of genotypes. Moreover in the same
paper a number of experiments suggest the conjec-
ture that there are not two distinct solutions re-
solving correctly all input genotypes.

Note that, if a genotype g contains only one
heterozygous site, then we can infer without ambi-
guities the two haplotypes that resolve g (the two
haplotypes are obtained by computing the only two
possible resolutions of the single heterozygous site).
Thus a genotype is considered ambiguous when it
contains at least two unresolved sites, that is sites
of value 7

Definition 3.1 (Inference Rule). Let G =
{91, -.9m} be a set of genotypes and H a nonempty
set of haplotypes. The application of the inference
rule to a haplotype h € H compatible with a geno-
type g € G consists of adding R(g,h) to H and
removing g from G.

The computational problem is therefore, given
(G, H), finding a sequence of applications of the
inference rule that leads to a set H’ of haplotypes
that resolve all genotypes G (that is all genotypes
are removed from G), whenever this is possible. In
this case we say that H', with H' O H, resolves G.
Example 3.1 shows an instance of the problem.

Ezample 3.1 (Inference Rule). Let G = {g1 =
070701, go = 007007} and H = {hy = 010101, hy =
000101}. The optimal sequence of applications con-
sists of applying the inference rule first to (g1, h1),
and then to go; this application allows to resolve all
genotypes in G. In fact R(g1,h1) = hs = 000001,
after having applied the rule G = {g2} and H =
{h1,ha,hs}. Now it is possible to apply the rule
to (ga, hs), since R(gz, hs) = 001000 the set G be-
comes empty.

If we had decided to apply the inference rule
first to (g1, hs), the obtained haplotype would not
allow to resolve go. In fact R(gi,h2) = hs =
010001, but none of the vectors now in H can be
used to resolve gs.

In [12] a formal framework to analyze and inves-
tigate the computational complexity of such prob-
lem has been proposed, by stating an optimization
problem, whose corresponding decision version is
NP-hard. The optimization problem follows:

Problem 2 (MR). (Maximum Resolution
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Problem)

Input: A set G of genotypes and a set H of
haplotypes.

Output: A maximum cardinality subset G’ of
G of genotypes that are removed from G by a se-
quence of applications of the inference rule starting
from G and H.

The computational complexity of some re-
stricted versions of the MR problem is investigated
n [12]. Given a set of genotypes G and a set H of
haplotypes, H has the unique expression property
w.r.t. G, in short UFE property, if for every g € G,
there exists at most a pair hy, hy in H such that
R(g,h1) = hy. The consequent problem follows:

Problem 3 (UEMR). (Unique Expression
Maximum Resolution Problem)

Input: A set G of genotypes and a set H of
haplotypes with the UE property.

Output: A maximum-cardinality subset G’ of
G of genotypes that are removed from G by a se-
quence of applications of the inference rule starting
from G and H that leaves a set H' of haplotypes
having the UE property w.r.t. G'.

The proof in [12] that the MR problem is NP-
hard makes use of a set H of haplotypes with the
UE property, thus proving that also the restricted
UEMR problem is NP-hard.

In [12] a heuristic for the MR problem is pro-
posed. In particular, the MR problem is reduced
through a worst-case exponential time reduction
to a new graph problem, which consists of finding
some induced subtrees in a graph!'?!. A heuristic
for this last problem by using integer linear pro-
gramming is presented.

Some questions related to the MR problem re-
main open. Mainly, the computational complexity
of solving a single genotype from a set containing
both genotypes and haplotypes, by iteratively us-
ing the inference rule is unknown. Problem 4 is the
formalization of the above question which is of fun-
damental importance, as determining if Problem 4
can be solved in polynomial time, would give some
insights on the feasibility of some possible applica-
tions of the inference rule that are different from
the one suggested in the MR problem.

Problem 4 (SGR). (Single Genotype Resolu-
tion Problem)

Input: A non empty set H of haplotypes and
a distinguished genotype g € G in a set G of geno-
types.

Output: A sequence of applications of the in-
ference rule that resolves a subset of G including

g.
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3.2 The Inference Problem by the Coales-
cent Model

One of the main drawbacks of the approach pre-
sented previously is that no biological assumption
has been made, and sometimes biological assump-
tions allow to restrict the problem so that efficient
and more realistic solutions are obtained. Conse-
quently some specific biological models have been
introduced recently in the framework of haplotyp-
ing. An interesting model has been proposed in [7]:
the coalescent model, which assumes that the evo-
lutionary history is represented by a rooted tree,
where each given sequence labels one of the leaves
of the tree. The infinite site model is also assumed,
that is at most one mutation can occur in a given
site in the whole tree. This last assumption, which
forbids recurrent mutations, is suitable to repre-
sent the evolutionary history in absence of recom-
binations and when the basic evolutionary event is
changing the value of an SNP site, from 0 to 1.
Consequently mutations are directed, that is de-
scendants of individuals in which a mutation has
occurred still own the given mutation(!3!,

The following definition introduces the main
combinatorial tool for describing some computa-
tional problems related to the coalescent model.

Definition 3.2. Let B be an n x m{0,1}-
matriz, where each row in B is a binary haplotype
and each column t is the n vector of the SNP sites
i for the m haplotypes. A haplotype perfect phy-
logeny for B, in short hpp, is a rooted tree T with
n leaves such that the following properties hold:

1) each leaf of the tree is labeled by a distinct
haplotype from B, that is a distinct row of B;

2) each internal edge of T is labeled by at least
an SNP site j changing from 0 to 1, while each site
labels at most one edge;

3) for each haplotype leaf h, the unique path
from the root of T to h specifies exactly all SNP
sites that are 1 in h.

Without loss of generality, the root of the phy-
logeny is assumed to be labelled by (0,0,...,0).
Consider now a matrix A, where each row is a geno-
type, that is A is a {0, 1, 7}-matrix. Analogously
to the case of genotypes vectors, it is possible to
give the definition of realization of matrix A by a
matrix B, that is a matrix B such that each row of
A is resolved by a pair of rows of B.

Definition 3.3. A {0,1}-matriz B is a real-
ization of a {0,1,?}-matric A if each row A; of A
s resolved by a pair of rows of B.

The third point of Definition 3.2 implies that

each path in the perfect phylogeny T from the root
to a haplotype leaf h is a compact representation
of the row of matrix B corresponding to h, since
it represents all the sites of that row with value 1.
Moreover let v be an internal vertex of T, u the
parent of v and H, the set of all haplotype leaves
of the subtree of T that have root in v; then H,,
consists of exactly all haplotypes that have value 1
in the SNP sites labeling (u,v). Hence H, provides
a compact representation of column j of matrix B.

In [7, 8] the haplotype inference problem is then
stated using the notion of haplotype perfect phy-
logeny. The basic idea of the common approach in
[7, 8] is that n genotypes must be resolved by hap-
lotypes that can be related by a haplotype perfect
phylogeny as in Definition 3.2. Formally, the ap-
proach described above leads to the following prob-
lem as stated in [8].

Problem 5 (PPH). (Perfect Phylogeny Hap-
lotyping Problem)

Input:
{0,1,7}.

Output: A matrix B which is a realization of
matrix A and a haplotype perfect phylogeny for B,
or decide that such a matrix does not exist.

An n X m matrix A over alphabet

In [7] the PPH problem is stated by requiring
that a realization B of matrix A must be obtained
by doubling each row r; of matrix A, in such a way
that rows ry; and 79541 of B solve row r; in A.
We will call such a realization a full realization of
matrix A. The definition given above is more gen-
eral and allows us to define an optimization version
of the problem, that derives by applying a parsi-
monious criterion in inferring the haplotypes: the
MPPH problem stated below. Indeed, it seems rea-
sonable to require that the inference process from
genotypes should produce a minimum number of
distinct haplotypes, as pointed out by the empiri-
cal results in [11].

Problem 6 (MPPH). (Minimum Perfect
Phylogeny Haplotyping Problem)

Input: An m x m matrix A over alphabet
{0,1,7}.

Output: A matrix B which is a realization of
matrix A with the smallest number of rows and a
haplotype perfect phylogeny for B or decide that
such a matrix does not exist.

Given an instance of the PPH problem, a first
algorithmic issue concerns the existence of a solu-
tion for that instance. Indeed, a haplotype perfect
phylogeny induces two relations between pairs of
SNP sites labeling edges in the tree, one between
siblings and one between an ancestor and a descen-
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dant. Those relations do not always allow to find
a solution to every instance of the PPH problem.
Two sites ¢, j of an individual haplotype h are re-
lated by the ancestor-descendant relation whenever
changes 0 to 1 hold in both sites ¢ and j of h: in-
deed, in the hpp, the path from the root to the
leaf labeled by h contains two edges labeled ¢ and
j. Moreover ¢ and j are 1-0 siblings (0-1 siblings)
in an individual haplotype h, whenever the change
0 to 1 occurs in position ¢ of h and not in j (or
vice versa, respectively). It is easy to verify that
in an hpp the two sites i and j that are related
in a haplotype by the parenthood relation cannot
be 0-1 siblings in a haplotype and 1-0 siblings in
another haplotype (see Fig.3). Formally, this sit-
uation is described by the existence of three rows
h1,hs, hs and two columns ¢, j of a matrix B such
that B[hl,l] = B[hl,]] = 1, while B[hg,l] =1
and Blhg,j] = 0, Blhs,i] = 1 and Blhs,j] = 0.
The submatrix of B induced by 4,7 and hy, hs, hs
is used['3] to characterize matrices that cannot be
represented by an hpp: we call such a submatrix
the forbidden matrix, see Fig.2.

i
hy |1 1
ha |1 0
hs [0 1

Fig.2. Example of a forbidden matrix M.

00 00

/7,1 /7,2 h,l /'1,3
(a) (b)

Fig.3. The forbidden matrix M cannot be represented us-
ing a perfect phylogeny. In the tree (a) is represented the
relation between sites ¢ and 7 due to the haplotypes h; and
ha of matrix M. In the tree (b) is represented the relation
between sites ¢ and j due to the haplotypes h1 and h3 of
matrix M. Note that in tree (a) ¢ must be an ancestor of j,

while in tree (b) 7 must be an ancestor of .

Lemma 3.1. Let A be an n X m matriz over
alphabet {0,1}. Then, A admits an hpp iff every
submatrixz of A induced by three rows and a pair of
columns is not the forbidden matriz of Fig.2.
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An analogous of Lemma 3.1 holds for matrices
over alphabet {0,1,?}. In a first paper on the PPH
problem, a polynomial solution to the problem of
computing a full realization of a matrix A based
on a reduction to the Graph Realization Problem
is proposed!”l, while direct algorithms of O(nm?)
time complexity are proposed in [14] and [8]. The
complexity of the MPPH problem is still open. An
experimental study of the biological validity and
relevance of the Coalescent model in haplotype in-
ference is largely discussed in a recent paper®.

4 Inferring Haplotypes in Pedigrees

In this section, we investigate the HI problem
in a pedigree. The difference between population
data and pedigree data lies in the relations among
the individuals which are regarded independent if
taken from a population, while the individuals are
related by a parenthood relation if a pedigree is
specified. The dependency relationships in pedi-
gree data have implications in two different aspects:
1) a structure (called pedigree graph) is imposed
over pedigree data, whereas for population data to
build such a structure (corresponding to recover-
ing the evolutionary history of the involved hap-
lotypes) might be one of the goals; 2) Mendelian
Law is assumed, that is each child receives one al-
lele from the father and one from the mother at
each site, thus no mutations occur in the pedigree.
Consequently Mendelian law can be used to par-
tially resolve some genotypes.

Although the parental information gives some
constraints on the reconstruction of haplotypes,
there are still too many solutions that are consis-
tent with the genotype data and Mendelian law,
especially for biallelic data like SNPs, where in
general the probability that more individuals have
the same heterozygous genotypes is higher than
that on multi-allelic data. Based on the fact
that genetic recombinations are rare in human
datal*515] people believe that haplotypes with
fewer recombinations should be preferred in a hap-
lotype reconstruction!'¢—18l,

As already pointed out in this paper, the par-
simonious principle naturally leads to optimization
problems. In this case the computational problem
is finding a haplotype configuration with minimum
number of recombinants. Again, recombinations
make the problem hard; in fact a first formal proof
of the NP-hardness of this problem is given in [19]
for the general case of pedigree graphs. A heuristic
algorithm for this problem and a polynomial ex-
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act algorithm for the 0-recombination situation are
also presented in that paper. We will discuss those
results later, but first we need to formally define
the notion of a pedigree graph and several models
for the HI problem on pedigree data.

Let us first define the general notion of a pedi-
gree graph, without genotype information that has
become widespread in biology.

Definition 4.1. A pedigree graph is a weakly
connected directed acyclic graph G = (V, E), where
V=MUFUN, M stands for the male nodes, F'
stands for the female nodes, N stands for the mat-
ing nodes, and E = {e = (u,v): v € M UF and
vEN orue N andve MUF}. MUF are called
the individual nodes. The indegree of each individ-
ual node is at most 1. The indegree of a mating
node must be 2, with one edge starting from a male
node (called father) and the other edge from a fe-
male node (called mother), and the outdegree of a
mating node must be larger than zero.

In a pedigree, the individual nodes adjacent to a
mating node (i.e., they have edges from the mating
node) are called the children of the two individual
nodes adjacent from the mating node (i.e. the fa-
ther and mother nodes, which have edges to the
mating node). The individual nodes that have no
parents (indegree is zero) are called founders. For
each mating node, the induced subgraph contain-
ing the father, mother, mating, and children nodes
is called a nuclear family. A parents-offspring trio
(or simply trio) consists of two parents and one of
their children. A mating loop is a cycle in the graph
obtained from G when the directions of edges are
ignored.

An equivalent definition of pedigree graph that
points out the combinatorial nature of the repre-
sentation is the following:

Definition 4.2. A pedigree graph G is a weakly
connected directed acyclic graph (V, E), where each

3-113-123-133-143-153-9 3-10

()

o O

vertex has indegree 2 or 0.

In Definition 4.2 only individual nodes are rep-
resented and their gender information are outfit-
ted. The founders are the vertices without incom-
ing edges and a trio is any subgraph of G with
3 vertices u,v,w where (u,v) (here (u,v) stands
for an arc from u to v since we are talking about
the direct graph) and (w,v) are the only arcs of
the pedigree graph; a trio is denoted by the triple
(u,v,w). In the following we will mean Definition
4.2 when we refer to the notion of pedigree graph.
The only substantial difference with Definition 4.1
regards the definition of mating loops; when Defi-
nition 4.2 is considered, a mating loop consists of
two distinct paths from a vertex x to a vertex y.
Fig.4 shows side by side an example pedigree ac-
cording to the two definitions of pedigree graph, in
particular to the left the common representation of
pedigree graphs is reported.

The above pedigree graph definition is very gen-
eral and there are several restricted versions defined
as follows.

Definition 4.3. A pedigree tree T is a pedigree
graph without mating loops.

We further distinguish pedigree trees by re-
stricting the number of mating partners each indi-
vidual node of the tree can have. Given a pedigree
tree T, for any vertex v let P(v) be the set of ver-
tices = such that (z,v) is an arc of T. Then T is a
single-mating pedigree tree, if for any two vertices
v,w, the two sets P(v) and P(w) are disjoint or
the same set; otherwise the pedigree tree is called
multi-mating.

The definition of pedigree graph introduced
so far allows us to describe the structure of the
parental relations. We still need a notion that allow
us to relate the actual genotypes to the structure
of a pedigree graph.

(b)

Fig.4. A pedigree with 15 members. (a) A square represents a male node and a circle represents a female node, and a solid

(round) node represents a mating node. The children (e.g., 3-3, 3-5 and 3-7) are placed under their parents (e.g., 3-1 and

3-2). (b) The representation of the same pedigree according to Definition 4.2.
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1-13 1-14 1-15

1-16 1-17

Fig.5. A pedigree with 17 members and a mating loop with-

out showing the mating nodes.

Definition 4.4. A genotyped pedigree graph is
a pedigree graph G where each individual vertez is
labeled by an m-site genotype vector.

With a slight abuse of language by pedigree
graph we will denote both a labeled (genotyped)
and an unlabeled pedigree graph and in the case of
labeled pedigree, we use the node itself to denote
the genotype vector associated to the node itself.
Recall that for any node u, given the genotype vec-
tor (u[l],u[2],...,u[m]), then u[i] € {0,1,?7}. If
uli] # ?, then we say that u[i] is defined. Similarly
a haplotyped pedigree graph is a pedigree graph
where each individual vertex is labeled with two
haplotypes.

Definition 4.5. A genotyped pedigree graph G
1s g-valid if the following consistency rules hold.
Given a trio (u,v,w), then for each i, 1 <i < m:

o if u[i] # w[i] are both defined, then v[i] =7;

o if ufi] # w[i] and only one of u[i] or w[i] is
defined, then v[i| = w[i] or v[i] = u[i];

e if ui] = w[i] =7, then v[i] can be 0,1 or 7;

e ufi] = v[i] = wli], otherwise.

Then, given a g-valid genotyped pedigree graph
G, we are interested in a haplotyped pedigree
graph with same sets of vertices and edges, such
that the haplotypes labeling a vertex v resolve the
genotype of v in G and each haplotype (pater-
nal/maternal) in a child is inherited from each par-
ent (father/mother) with/without recombinations.
In such a case we will say that the haplotyped graph
is a realization of G.

Problem 7 (PHI). (Pedigree Graph Haplo-
type Inference Problem)

Input: A g-valid genotyped pedigree graph G.

Output: A haplotyped pedigree graph which
is a realization of G.

Even though a realization of the genotyped
graph explicitly associates the two haplotypes of
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each child to the ones of its parents, a realization
might not unambiguously determine for each al-
lele on a given haplotype what is the haplotype
of its corresponding parent from which it derives.
For instance let us consider Fig.6, we know that
the first allele of a haplotype of the child comes
from her mother, but does it come originally from
a grandmother or a grandfather? In order to dis-
ambiguate those situations we introduce the notion
of GS value of each allele which states if it is inher-
ited from parent’s paternal haplotype or maternal
haplotype.

Female Male Female Male

w'

10]
1] Father
| 10)

Mother

Fig.6. The child in a pedigree tree: it is known that the first
allele of a haplotype of the child comes from her mother, but
it is not known if it is originally from a grandmother or a

grandfather.

The introduction of a GS value for each al-
lele is necessary due to the presence of recom-
binations, because in this case each haplotype is
not the exact copy of one haplotype of a parent.
More formally, given v the child in a trio {(u,v,w)
where v and w are respectively the father and the
mother, and assuming that hq(z), ho(z) denote
the pair of haplotypes resolving the genotype at
node z, GS(hq1(v[i])) = 0 if hq(v[i]) = hy(ulz]) and
GS(h1(v[i])) = 1 if hy(v[i]) = ho(u[i]). Similarly
we can define GS(ha(v[i])).

We are now able to exploit the GS values to
count the number of recombinants as follows: for
any two alleles that are at adjacent sites and from
the same haplotype, they induce a recombinant (or
recombination event) if their GS differ. Formally,
given haplotype h, a recombination occurs at site %
of h iff GS(h[i]) # GS(h[i + 1]). According to the
parsimonious principle we can derive an optimiza-
tion problem using the above notions.

Problem 8 (GMRHI). (General Minimum

Recombination Haplotype Inference Problem)

Input: A g-valid genotyped pedigree graph G.
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Output: A realization of G minimizing the
number of recombination events.

In [19] it has been proved that GMRHI (orig-
inally called MRHC problem in their paper) is in
general NP-hard. Actually the proof in the paper
shows that even with two sites (m = 2), the GM-
RHI problem is still NP-hard in the case of the
pedigree graph allowing mating loops. The reduc-
tion is from a stronger version of tridimensional
matching which is NP-hard[?°!. An iterative heuris-
tic is proposed based on the assumption that re-
combination events are rare. In [19] also a polyno-
mial time exact algorithm for the restriction of the
problem where no recombination occurs is given,
that is:

Problem 9 (ZRHI). (Zero-Recombinant Hap-
lotype Inference Problem)

Input: A pedigree graph G.

Output: A realization of G such that no re-
combination events occurs if such realization exists,
otherwise report that no realization exists.

The algorithm first identifies all the necessary
constraints based on Mendelian Law and the zero
recombinant assumption, and represents them us-
ing a system of linear equations over the cyclic
group Z3. By using a simple method based on
Gaussian elimination, all possible feasible haplo-
type configurations could be obtained. Since in
the case of human pedigrees, mating loops are very
rare, it becomes interesting to give the following
more restricted formulations of the general prob-
lem.

Problem 10 (MPT-MRHI). (Multi-Mating
Pedigree Tree Minimum Recombination Haplotype
Inference Problem)

Input: A multi-mating g-valid genotyped pedi-
gree tree T

Output: A realization of T minimizing the
number of recombination events.

Problem 11 (SPT-MRHI). (Single-Mating
Pedigree Tree Minimum Recombination Haplotype
Inference Problem)

Input: A single-mating g-valid genotyped
pedigree tree T'.
Output: A realization of T minimizing the

number of recombination events.

More recently it has been proved in [21] that
even SPT-MRHI is NP-hard by a reduction from
MAX-CUTI2°. Unlike the NP-hardness proof of
GMRHI in [19], where only two sites are needed,
the proof of SPT-MRHI does require an unbounded
number of sites. It is an interesting problem to
study the computational complexity of SPT-MRHI

problem when the number of children of any two
individual nodes is bounded by a constant.

5 Inferring Haplotypes from Fragments

The Human Genome project has successfully
produced a draft version of the DNA present in
human beings, through a sequencing process. A
different kind of problem arises when the sequenc-
ing process aims also to reconstruct haplotypes.
Roughly speaking, the sequencing process is made
of two phases: in the first phase a number of
fragments are obtained, where each fragment is
a small piece (a few hundreds of bases long) of
the examined DNA. Afterwards all such fragments
are merged into a chromosome, for example, via
shotgun sequencing/®. In its original formulation
the sequencing problem assumes that all fragments
come from only one copy of the chromosomes of a
DNA strand. But this assumption is too weak, in
fact not only the fragments come from both copies,
but it is not possible to associate the fragments to
the copy of the chromosome from which they origi-
nate. Thus computing the two sequences that form
the haplotypes becomes more challenging. More-
over, the presence of errors in the fragments that
need to be assembled makes harder the problem
of reconstructing the original sequence from frag-
ments when SNPs are considered.

In [6], the problem of reconstructing the pair of
haplotype sequences from fragments of a human
chromosome is investigated by introducing some
formulations. First of all, each location of an SNP
over a fragment is assumed to be known, that is the
genomic sequence is thought of as a sequence of po-
sitions with one (not an SNP site) or two (an SNP
biallelic site) symbols associated to each position.
The sequence of SNPs sites along a fragment is de-
scribed by a vector over a binary alphabet {0,1}
that is used to denote the two distinct alleles of
SNP sites contained in the fragment.

The formal definitions of the problems intro-
duced in [6] share the fact that the instance is al-
ways an n X m matrix M where each entry M]3, j] is
0 or 1 or —, and where the i-th row corresponds to
the i-th fragment, conversely the j-th column corre-
sponds to the j-th SNP. When M, j] = — then the
i-th fragment does not cover the j-th SNP, which
means that the allele of the fragment in position j is
unknown: the entry — of matrix M is called a hole.
Moreover we will say that two fragments conflict
with each other if they disagree on an SNP covered
by both fragments, that is fragments ¢ and j of ma-
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trix M are in conflict whenever there exists an SNP
site k such that M[i, k] # M|j, k] and both M][i, k]
and M|y, k] are not holes. A conflict occurring at a
given SNP site denotes the fact that the two frag-
ments come from two distinct haplotypes, or more
precisely, the SNP site is heterozygous and has two
distinct alleles on the two chromosome copies.

If the matrix M represents m fragments ob-
tained from one pair of haplotypes and fragments
do not contain errors in the alleles reported in the
matrix, conflicts among the fragments can be used
to derive a partition of fragments into two sets, each
one containing the non conflicting fragments from
the same haplotype.

Thus, we define a matrix M error free iff there
exists a partition of rows of M into two matrices
My and Ms such that both M; and M, do not
contain conflicting fragments.

In [6], the following biological problem is in-
vestigated: the reconstruction of the two different
haplotypes of a chromosome from SNP values of
fragments represented by an instance matrix that
is not necessarily error free. It must be pointed out
that, even when the matrix is error free, there may
be more than one pair of haplotypes whose frag-
ments give the same instance matrix: in this case
the reconstruction of the original haplotypes for the
chromosome from an SNP matrix is not solvable,
as the instance matrix does not contain enough in-
formation to disambiguate among all possible hap-
lotypes.

Hence, we restrict ourselves to the problem of
finding a pair of haplotypes whose fragments are
represented by a given matrix. Then the problem
consists of assigning each fragments to a copy of
the chromosome.

= o S|
|
c
|

— o c|o

T W N —

Fig.7. An error-free matrix and its associated fragment con-

flict graph.

When the matrix is error free, this problem can
be solved easily by computing the fragment con-
flict graph, whose vertices are the fragments and
the pair (4, j) is an edge iff the two fragments ¢ and
7 conflict. Indeed, the graph must be bipartite,
with each shore representing all the fragments that
are in one of the two copies of the chromosome.
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Please notice that the solution to the problem of
inferring haplotypes from fragments obtained from
the fragment conflict graph is unique iff the graph
is connected, in which case the solution consists of
a unique pair of haplotypes.

1 2 3 4 5 6 1 3
1o 1 - 0
200 L 0 2 ;
3010 - — 11 °
4 1 1 0 4
5|1 I - 1 1
Fig.8. A matrix with errors and its associated fragment

conflict graph.

In the presence of errors the problem becomes
more complex; in fact we look for the minimum
number of modifications to the instance matrix to
Different operations on the
matrix may be defined and each of such opera-
tions leads to a specific computational problem,
as pointed out in [6] where the following problems
have been introduced:

Problem 12 (MFR). (Minimum Fragment
Removal)

Compute the minimum set of rows to remove
from the matrix so that the matrix is error free.

Problem 13 (MSR). (Minimum SNP Re-
moval)

make it error free.

Compute the minimum set of columns to re-
move from the matrix so that the matrix is error
free.

Problem 14 (LHR). (Longest Haplotype Re-
construction)

Compute a set of rows to remove from the ma-
trix so that the matrix is error free and the sum of
the lengths of the inferred haplotypes is maximized.

Problem 15 (MEC). (Minimum Error Cor-
rection)

Compute the minimum number of corrections
on the entries of the matrix so that the resulting
matrix is error free.

A single fragment may (but not must) cover
SNP sites that are consecutive on the fragment:
in such case the fragment is gapless. A fragment
has k£ gaps if it covers k + 1 blocks of consecutive
SNPs.

Of particular interests are the cases of 0 or 1
gaps, as these cases are common when sequencing.
The classical shotgun sequencing procedure deals
with probes that are consecutive nucleotides from
a DNA strand. Recent advances of the sequencing
technology has made the production of mate pairs
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feasible, where a mate pair is made of two probes
from the same copy of a chromosome and with a
distance between the two probes that is approxi-
mately known. Representing a mate pair with a
1-gap fragment is immediate. In Table 1 are sum-
marized some results described in [6, 22].

Table 1. Known Results for Some Problems on Fragments

Problems Gaps Exact Approximation
<1 NP-hard APX-hard?
MFR 0 Solvable in time
O(m?n 4+ m3)
k holes Solvable in time
O(22knm2 + 23km3)
<2 NP-hard APX-hard?
MSR 0 Solvable in time
O(mn?)
k holes Solvable in time
O(mn2k+2)
LHR k holes 7 ?
0 Polynomial time
MEC n NP-hard ?
0 ?

The presence of gaps in fragments and also the
number of holes is strictly related to the computa-
tional complexity of the above problems (Table 1
reports all known results about the complexity of
such problems). Indeed, whenever fragments are
gapless the problem is in general polynomial. The
1-gap case is relevant since the presence of at most
one gap in each fragment is a sufficient condition to
make hard the MFR problem. It is an interesting
question to investigate the 1-gap case for the MSR
and the other problems.

In the following we describe a graph based
method to solve the MSR. problem for gapless in-
stance matrices. This method uses the notion of
conflict among SNP sites. Given an SNP matrix
M, two SNP sites ¢ and j are in conflict in M iff ¢
and j assumes both 0,1 values in M and there ex-
ist two fragments x and y such that the submatrix
induced by rows x and y and columns ¢ and j has
three symbols of one type and one of the opposite.
SNP conflicts of an SNP matrix M are represented
by the SNP conflict graph having vertices the SNPs
and an edge for each pair (i, 7) of conflicting SNPs.

An interesting property relates the SNP matri-
ces without gaps to error free matrices.

Lemma 5.1. A matriz without gaps is error
free iff it has no SNP conflicts.

By using the above property, that can be easily
verified, the problem MSR reduces to solve the Min
Vertex Cover problem over the SNP conflict graph,
as making a matrix error free means to remove from
such graph the minimum number of vertices (ma-
trix columns) so that the graph has no edges. In [6]
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it is proved that whenever a matrix is without gaps
then the SNP conflict graph is perfect!?3]. Being
the Min Vertex Cover problem on perfect graphs
polynomial-time solvable, MSR can be solved effi-
ciently via the above reduction.

On the other hand, when the fragments contain
some gaps the reduction does not work as illus-
trated in the following example.

2 3 4 | °3
10 0 0 \‘

T I A
3 0 1 1| 26

Fig.9. A matrix with gaps and the corresponding SNP con-
flict graph.

FEzample 5.1. Assume that M is the matrix of
Fig.9 and G the corresponding SNP conflict graph.
Then the vertex 4 is a minimum vertex cover, but
the matrix M’ obtained from M by removing the
column 4 is not error free.

All algorithms for the gapless cases are via dy-
namic programming; the main idea is that it is pos-
sible to infer the optimal solution from the optimal
solution on a submatrix obtained by removing an
SNP column (MSR) or a fragment row (MFR). Let
M be an SNP matrix, we denote with MJ1...k]
the submatrix of M formed by the first k£ rows of
M.

Let us consider the MFR problem. Since the
matrix M is gapless, each row of M, consists of
a sequence of defined values encoding the actual
fragment, preceded or followed by some (possibly
zero) holes. For each row f of M we denote by I(f)
and 7(f) respectively the leftmost and the right-
most positions (SNP) of f that are not holes. The
algorithm will exploit the fact that all positions be-
tween [(f) and r(f) must be defined. A first pre-
processing step of the algorithm is to sort the rows
of M in increasing order of I(f), that is I(7) < (),
whenever ¢ < j.

A dynamic programming algorithm mainly con-
sists of showing that an optimal solution of an in-
stance can be computed from an optimal solution of
some induced subinstance, in our case we will com-
pute the optimal solution over the matrix M by
exploiting the optimal solution where the “right-
most” fragment is removed from M. Consequently
we will show how to solve the instance M|[1..k] from
an optimal solution of M[1..k — 1] (we recall here
that an optimal solution is a minimum-size set of
rows that must be removed to obtain an error-free
matrix).
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N\ l

Fragment 2

| ] ITaplotype 1

i : Maplotype 2

Fragment j

Fig.10. Example of fragments placed on the haplotypes by the algorithm in [22].

The algorithm computes the value D[i, j, k] that
is the optimum over instance M|1... k] with the ad-
ditional restriction that fragment ¢ (respectively j)
has the maximum value of r(¢) (resp. r(j)) among
all r(f) for all fragments placed on the first (resp.
the second) haplotype. See Fig.10 for an illustra-
tive example.

Moreover for each row f considered we denote
with OK (f) the set of rows with index g < f that
agree with row f, that is rows representing frag-
ments that may be on the same haplotype copy.
Now we can explicitly show the recurrence that al-
lows to solve the problem. The following possible
cases must be considered:

1) D[i,4,0] :==0

2) k>i, k>j; Di,j, k] =

D[iaja k — ]-]a if 'I‘(k) < 7'(]) and rows
k and j agree
D[’i,j, k— 1]7 if T(k) < 7'(’6) and rows

k and 7 agree

D[i,j,k — 1]+ 1, otherwise

3) k = i; Dk, j, k] := minyc ok (k) r(h)<r(k) { D[R,

4) k= _], D[’L, k, k] = minheOK(k),,,(h)gr(k){D[i,
hk— 1]}

The optimal solution will be miny, 1 {D[h, k;m]}.
In [22] the dynamic programming algorithm de-
scribed has also been extended as a fixed-parameter
algorithm for the same problem, where the param-
eter is the number of holes contained in the frag-
ments, that is the number of unresolved symbols
between the leftmost and the rightmost resolved
symbol of each fragment. The algorithm can also
be extended to the class of matrices where the
columns can be permuted so that in each row
the (0/1) symbols appear consecutively. The last
problem is also a version of the consecutive ones
problem, for which a polynomial-time algorithm
has been described in [24].

6 A Glimpse over Statistical Methods

In this section we present some basic aspects of
the application of statistical methods to tackle the
haplotype inference problem. These methods are
among the most used by biologists. Indeed, a cer-
tain number of results on haplotype inference from
real data have been produced based on some sta-
tistical models. Anyway here we will only briefly
review some of these algorithms, since this sur-
vey mainly focuses on combinatorial approaches for
haplotype inference. Moreover, some combinato-
rial problems discussed here aim to address some
biological issues that are different from the ones
attacked using the algorithms based on statistical
models.

The introduction of statistical models is mainly
due to the presence of some shortcomings of the
method introduced in [11]. In fact, the method
in [11] requires an initial set of resolved haplo-
types and it also highly depends upon the order
by which haplotypes are resolved. The approach
of [12, 25] lowers the relevance of the dependency
on the order, hence making the whole procedure
more reliable. The main idea of statistical models
is that haplotypes have an unknown distribution
in the target population and the observed geno-
types of each individual are simply combination of
two haplotypes randomly drawn from the popula-
tion. The goal of statistical haplotype inference is
thus to estimate the haplotype frequencies and the
haplotypes of each individual can be easily inferred
based on the haplotype frequencies under some bi-
ological assumptions (like random mating assump-
tion). Two different formulations of the haplotype
inference problem, namely, Maximum-Likelihood
inference2] and Bayesian inferencel27-28! have been
investigated and will be briefly discussed here.

Problem 16 (FHI). (Frequencies Haplotype
Inference Problem)

Input: A sample G of genotypes.

Output: The set of haplotype frequencies
{h1,ha,...,h,} (where n is the number of all possi-
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ble haplotypes) that maximize the likelihood func-
tion of observing the genotype sample G.

Problem 17 (BFHI). (Bayesian Frequencies
Haplotype Inference Problem)

Input: A sample G of genotypes and a priori
distribution of the frequencies of haplotypes.

Output: The posterior distribution of the hap-
lotype frequencies given the sample G.

The FHI problem is tackled in [26], where
an Expectation-Maximization algorithm (EM) has
been proposed to estimate the haplotype frequen-
cies that maximize the likelihood function of geno-
type sample. It is well known that the gen-
eral framework of EM algorithm/®! is to find the
maximum-likelihood estimator(s) by iteratively ex-
ecuting the E-step and M-step until convergence in
the presence of missing data. Let H; denote the set
of haplotype frequencies and G; denote the set of
probabilities of all the genotypes at time ¢t. The EM
algorithm works by arbitrarily assigning an initial
value of Hy (a possible initial set of frequency val-
ues is the one corresponding to the assumption that
all possible haplotypes are equiprobable). Based on
Hy, the expectation of an observing genotype can
be easily calculated, which is one of the elements
in Gy. The expected genotype frequencies in G4
are used in turn to estimate the haplotype frequen-
cies at the M-step resulting in a new H;. Iterate
the two steps until convergence (i.e., the difference
between H;y; and H; is smaller than a predefined
value). At each iteration, the solution H; is im-
proved in the M-step by maximizing the likelihood
function of the genotype sample. Different initial
values can be taken in order to increase the possi-
bility to obtain a global optimal solution.

The BFHI problem is tackled by an itera-
tive stochastic-sampling strategy, the pseudo Gibbs
sampler (PGS)[?"], that makes use of the Markov
chain Monte Carlo method with the assumption of
a coalescent model. A Gibbs sampler iteratively
samples a pair of compatible haplotypes for each
genotype conditional on the genotypes G and on
other haplotypes, and uses these values to update
the frequencies of haplotype distribution. This it-
erative algorithm produces haplotype frequencies
hi,...,h,, as they were sampled from the desired
posterior distribution of the haplotype frequencies
given the sample genotypes G.

The two methods described above cannot han-
dle satisfactorily a large number of SNPs, or miss-
ing data. These issues are addressed by the method
proposed in [28], where a robust Bayesian proce-
dure has been introduced. The method in [28]

makes use of the biological model also used in [26],
but imposes no assumptions on the population his-
tory (comparing to the coalescent model used in
[27]). In particular the method introduces a divide-
and-conquer technique so that a larger number of
haplotypes can be studied. This algorithm par-
titions the genotypes into units, where each unit
has the maximum length of 8 loci. The method
first constructs a set of most probable partial hap-
lotypes compatible with each unit using the Gibbs
sampler. Two adjacent units are then combined to
construct a set of the most probable partial haplo-
types that are compatible with the genotypes of the
two units. The algorithm recursively combines the
partial haplotypes until the whole haplotype is cre-
ated. A detailed comparison of different statistical
methods and the combinatorial method in [11] can
be found in [28], which is based on an experimental
study.

We conclude this section by observing that,
since there is an exponential number of possible
haplotype solutions for a given set of genotypes,
the statistical methods may have to analyze an ex-
ponential number of haplotypes in order to gener-
ate the solution of the FHI and BFHI problems.
Even equipped with advanced numerical methods
like EM algorithm and Gibbs sampler, such statis-
tical methods are still very time consuming. Thus,
the application of these methods is restricted to a
small number of individuals in a population; more-
over the maximum number of individuals tractable
This

limitation is not present in other combinatorial

decreases as the number of SNPs increases.

approaches based on polynomial algorithmic solu-
tions.
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