
Identifying DNA and protein patterns with
statistically significant alignments of multiple
sequences
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Abstract
Motivation: Molecular biologists frequently can obtain
interesting insight by aligning a set of related DNA, RNA or
protein sequences. Such alignments can be used to determine
either evolutionary or functional relationships. Our interest
is in identifying functional relationships. Unless the se-
quences are very similar, it is necessary to have a specific
strategy for measuring—or scoring—the relatedness of the
aligned sequences. If the alignment is not known, one can be
determined by finding an alignment that optimizes the
scoring scheme.
Results: We describe four components to our approach for
determining alignments of multiple sequences. First, we
review a log-likelihood scoring scheme we call information
content. Second, we describe two methods for estimating the
P value of an individual information content score: (i) a
method that combines a technique from large-deviation
statistics with numerical calculations; (ii) a method that is
exclusively numerical. Third, we describe how we count the
number of possible alignments given the overall amount of
sequence data. This count is multiplied by the P value to
determine the expected frequency of an information content
score and, thus, the statistical significance of the correspon-
ding alignment. Statistical significance can be used to
compare alignments having differing widths and containing
differing numbers of sequences. Fourth, we describe a
greedy algorithm for determining alignments of functionally
related sequences. Finally, we test the accuracy of our P
value calculations, and give an example of using our
algorithm to identify binding sites for the Escherichia coli
CRP protein.
Availability: Programs were developed under the UNIX
operating system and are available by anonymous ftp from
ftp://beagle.colorado.edu/pub/consensus.
Contact: hertz@colorado.edu

Introduction

Functionally related DNA or protein sequences are generally
expected to share some common sequence elements. For

example, a DNA-binding protein is expected to bind related
DNA sequences. The pattern shared by a set of functionally
related sequences is commonly identified during the process
of aligning the sequences to maximize sequence conservation.

Central to any alignment is the method being used to model
the alignment. The goal of the model is to summarize the
alignment so that the collection of sequences can be de-
scribed more concisely than simply listing all the sequences.
The simplest and oldest method for describing a sequence
alignment is the consensus sequence, which contains the
most highly conserved letter (i.e. base for DNA or amino
acid for protein) at each position of the alignment. However,
most alignments are not limited to just a single letter at each
position. At some positions of an alignment, any letter may
be permissible, although some letters may occur much more
frequently than others.

If the sequences are assumed to be conserved because they
have not had time to diverge completely since splitting from
a common ancestor, then an alignment model incorporating
an evolutionary tree is appropriate. Our interest is in se-
quences that are related because of their common function.
Thus, we use a matrix model which does not include phy-
logenetic information. The simplest matrix model lists some
measure of the desirability of each letter at each position of
the alignment.

One of the simplest types of matrices is the alignment
matrix, which lists the number of occurrences of each letter
at each position of an alignment (e.g. Figure 1a). Another
simple type of matrix is the weight matrix, whose elements
are the weights used to score a test sequence to measure how
close that sequence word matches the pattern described by
the matrix (e.g. Figure 1b). A test sequence is aligned along
the weight matrix, and its score is the sum of the weights for
the letter aligned at each position. Weights can be derived
from the alignment matrix (Staden, 1984; Hertz et al., 1990;
Tatusov et al., 1994) or determined experimentally (Stormo
et al., 1986; Fields et al., 1997).

Matrices can also describe more complex patterns that
contain gaps (i.e. sequences contain insertions and deletions
relative to each other) or in which different positions are
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Fig. 1. Examples of the simple matrix model for summarizing a DNA alignment. (a) An alignment matrix describing the alignment of the four
6-mers on top. The matrix contains the number of times, ni , j, that letter i is observed at position j of this alignment. Below the matrix is the
consensus sequence corresponding to the alignment (N indicates that there is no nucleotide preference). (b) A weight matrix derived from the
alignment in (a). The formula used for transforming the alignment matrix to a weight matrix is shown above the arrow. In this formula, N is the
total number of sequences (four in this example), pi is the a priori probability of letter i (0.25 for all the bases in this example) and fi , j = ni , j/N
is the frequency of letter i at position j. The numbers enclosed in blocks are summed to give the overall score of the test sequence. The overall
score is 4.3, which is also the maximum possible score with this weight matrix.

correlated with each other (Hertz and Stormo, 1995). How-
ever, here, we are only concerned with sequences that can be
aligned without insertions and deletions. Furthermore, we
assume that the positions of an alignment function indepen-
dently according to whatever biochemical criteria are used to
select the underlying, functionally related sequences. Thus,
we will only be discussing the simplest matrix model, as il-
lustrated in Figure 1.

A good alignment is assumed to be one whose alignment
matrix is rarely expected to occur by chance. A standard stat-
istic for scoring the relative likelihood of an alignment matrix
is the log-likelihood ratio. We compare alignments using a
variant of the log-likelihood ratio we call information
content and determine alignments from functionally related,
unaligned sequences using a greedy algorithm (Stormo and
Hartzell, 1989; Hertz et al., 1990).

A limitation in the use of information content has been a
lack of good estimates of the statistical significance of ob-
serving a specific information content. In this paper, we pres-
ent an efficient method for calculating the P value of an in-
formation-content score. In our case, the P value is the prob-
ability of obtaining an information content greater than or
equal to the observed value, given the number of sequences
in the alignment and its width. This method combines nu-
merical calculations with a technique from large-deviation
statistics. We also present a slower, exclusively numerical
method for calculating the P value.

Next, we describe how we estimate the number of possible
alignments due to the amount of sequence data. This estimate

is combined with those of P value to arrive at an expectation
for observing a particular information content or greater. Fi-
nally, we describe the latest version of our greedy algorithm
for aligning functionally related sequences. This algorithm
has been substantially enhanced since its earliest version
(Stormo and Hartzell, 1989; Hertz et al., 1990). We also pres-
ent an example of using our algorithm and statistics to align
DNA-binding sites of the Escherichia coli CRP protein.

The distinction between the alignment model and the
alignment algorithm is important. For example, expectation
maximization (Lawrence and Reilly, 1990) and Gibbs
sampling (Lawrence et al., 1993) are alternative algorithms
that have been used to align DNA and protein sequences.
However, these alternative algorithms were used with align-
ment models and log-likelihood statistics intimately related
to those used by us. Thus, our calculations of statistical sig-
nificance are applicable to these other common alignment
algorithms.

Information content of an alignment matrix

In our comparison of alignment matrices, we assume that the
letters of a sequence are independent and identically distrib-
uted. Thus, the a priori probability of a sequence of letters is
the product of the a priori probability of the individual
letters. The a priori probability of the individual letters might
be the overall frequency of the letters within all sequences of
an organism (e.g. the genomic frequency of the nucleotide
bases) or the frequency within a subset of sequences, such as
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the frequency in the data set being aligned. Given the as-
sumption that the distribution of letters is independent and
identically distributed, the probability of an alignment matrix
is determined by the multinomial distribution:

Pmatrix ��
L

j�1

� N!
�A

i�1ni, j!
�

A

i�1

p
ni, j
i
� (1)

where i refers to the rows of the matrix (e.g. the bases A, C,
G, T for a DNA alignment), j refers to the columns of the
matrix (i.e. the positions of the letters within the alignment
pattern), A is the total number of letters in the sequence al-
phabet (four for DNA and 20 for protein), L is the total
number of columns in the matrix (six in Figure 1), pi is the
a priori probability of letter i, ni, j is the occurrence of letter
i at position j, and N is the total number of sequences in the
alignment (four in Figure 1).

Our assumption is that the most interesting alignments are
those whose letter frequencies most differ from the a priori
probabilities of the letters. The most commonly used
measures for scoring the divergence from the a priori prob-
abilities of a set of letters are the χ2 statistic and the log-likeli-
hood ratio. In our work, we use statistics based on the log-li-
kelihood ratio rather than the more ad hoc χ2 statistic. The
standard log-likelihood ratio statistic is

log-likelihood ratio ��
L

j�1

�
A

i�1

ni, j1n
pi

fi, j

where fi, j = ni, j/N is the frequency that letter i occurs at posi-

tion j such that �A
i�1 fi,j � 1. When the value of fi, j is close

to pi, –2 times the log-likelihood ratio is approximately equal
to the χ2 statistic. Under these conditions, this product will
have a distribution approximated by the χ2 distribution with
L(A – 1) degrees of freedom [Wilks (1938) and discussed in
many introductory statistics books].

The statistic we use is obtained by dividing the log-likeli-
hood ratio by –N. We call this statistic the information con-
tent of the sequence alignment and abbreviate it as Iseq:

Iseq ��
L

j�1

�
A

i�1

fi, j1n
fi, j

pi
(2)

This normalized log-likelihood ratio has gone by various
other names according to the perspective of those who have
used it. When motivated by information theory, this formula
is called the Kullback–Leibler information (Kullback and
Leibler, 1951) or relative entropy. When derived from large-
deviation principles, it is called the large-deviation rate func-
tion (Bucklew, 1990).

Iseq is also related to thermodynamics. In particular, the
information content of DNA sequences that are bound by a
common protein has been related to the thermodynamics of
the protein–DNA interaction. Iseq measures a relationship

between the average ∆G of the protein binding a functional
DNA site and the ∆G of the protein binding an arbitrary DNA
sequence (Berg and von Hippel, 1987; Stormo, 1988; Stor-
mo and Yoshioka, 1991; Fields et al., 1997; Stormo and
Fields, 1998). Thus, Iseq is a measure of the discrimination
between the binding of a functional DNA sequence and an
arbitrary DNA sequence. The ‘seq’ subscript indicates that
formula (2) is the information content derived from the stat-
istical properties of a sequence alignment. In Fields et al.
(1997), a closely related information content is discussed,
Ispec, that is derived through thermodynamics.

Formula (2) has various properties that satisfy intuitive
ideas of the information content of an alignment. Equation
(2) is a measure of the distance from the center of the dis-
tribution where fi, j = pi. When fi, j = pi, the distance is at a
minimum and equals zero. The distance is maximized when
the least expected letter occurs exclusively, i.e. fm, j = 1 and
pm ≤ pi for all values of i. Schneider et al. (1986) noticed that
e–Iseq is approximately equal to the frequency with which the
binding sites for a DNA-binding protein occur within the
E.coli genome. We (Hertz and Stormo, 1995) have since
come up with a more precise description of this relationship:
e–Iseq is an upper limit to the expected frequency with which
the sequence words within an alignment occur in random
sequences.

The P value of an information content

A statistic such as information content is not an end in itself.
We ultimately wish to calculate the P value of the statistic, i.e.
the probability of observing an alignment having the ob-
served information content or greater, given the width of the
alignment and the number of sequences in the alignment. As
discussed in the previous section, we assume that the prob-
ability of a specific letter being observed at any position of
a random sequence is equal to that letter’s a priori probability
and is independent of the occurrence of any other letter.
Thus, the null model for the alignment matrix is that the dis-
tribution of letters in each alignment column is an indepen-
dent multinomial distribution [formula (1)].

Under the above assumptions, when the information con-
tent is small and the number of sequences is large, 2NIseq
tends to a χ2 distribution with L(A – 1) degrees of freedom
since –NIseq is a log-likelihood ratio (discussed in many in-
troductory statistics books). Unfortunately, our conditions
generally involve very large scores and frequently few se-
quences; thus, the χ2 distribution tends to give poor probabil-
ity estimates.

However, we are able to obtain very accurate estimates of
the P value using a technique from large-deviation statistics.
Similar techniques have been used to determine the statistical
significance of other types of biologically interesting se-
quence patterns (Karlin and Altschul, 1990; Dembo et al.,
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1994). In the next section, we first give a general description
of the technique adapted from the description in Bucklew
(1990, Chapter VII) and then describe how we apply it to our
particular problem. In the section following that description,
we describe a numerical method for determining the P value.
In the Results, we test the accuracy of the large-deviation
method for determining P value against that obtained with
the numerical method.

A large-deviation technique for approximating
P value

The general method

In this subsection, we call our statistic S to emphasize that
this part of the method is applicable to any statistic and not
just information content. Our goal is to determine the P value
when S has a value of So. Let P(So) be the probability of ob-
serving an S with a value of So. If So is close to the average
value of S, the Central Limit Theorem will frequently lead to
a sufficient approximation of the P value. For example,
2NIseq can be approximated by the χ2 distribution near the
average value of NIseq. The technique described here is appli-
cable both near and far from the average value of S. The goal
of this technique is to convert the probability distribution into
two components. One component can be determined exactly.
The other component contains a probability distribution
Pγ (S) whose average value for S equals So.

Let M(θ) be the moment-generating function for the prob-
ability distribution P(S). M(θ), which is defined in most in-
troductory statistics books, is:

M(�) ��
all S

e�SP(S) (3)

We define a new probability distribution Pθ(S) as:

P�(S) �
e�SP(S)
M(�)

(4)

The M(θ) in the denominator ensures that:

�
all S

P�(S) � 1

By the definitions in equations (3) and (4), the average of S
for Pθ, µθ, is a function of the moment-generating function
and its first derivative:

�� ��
all S

SP�(S) � M�(�)�M(�) (5)

The variance of S for P�, �
2
�
, is a function of the moment-

generating function, its second derivative, and µθ:

�
2
�
��

all S

(S–��)
2P�(S) � M��(�)�M(�)–�2

�
(6)

When θ equals zero, formulas (5) and (6) give the average
and variance of S for the original distribution P(S).

Equation (4) can be rearranged so that P(S) is a function of
Pθ(S):

P(S) � �M(�)
e��

�

�e–�(S–�
�

), P
�
(S) (7)

Our goal in this technique is to work with a probability dis-
tribution Pγ (S) whose average value for S is So. Pγ (S) is ob-
tained from equation (4) by setting θ to a value γ such that µθ
equals So. From equation (5), γ is determined from the fol-
lowing formula:

So � M�(�)�M(�)

We numerically solve for γ using an algorithm that combines
the Newton–Raphson method with bisection (Press et al.,
1988, pp. 273–274). We calculate �2

� as a by-product of this
algorithm because it requires the derivative of µθ with re-
spect to θ, which happens to equal �2

�
. In practice, this nu-

merical solution requires only a few iterations.
By substituting γ into equation (7), we obtain:

P(S) � �M(�)
e�So
�e–�(S–So)P�(S)

and, thus, the P value of So equals:

P(S 	 So) � �M(�)
e�So
� �

S	So

e–�(S–So)P�(S) (8)

If M(θ) and its first two derivatives can be determined effi-
ciently enough, γ, �2

� and the bracketed component of equa-
tion (8) can be determined numerically.

If the overall statistic S is the sum of many independent
statistics, the Central Limit Theorem justifies estimating
Pγ (S) with a normal distribution. Under these conditions, the
summation in equation (8) can be approximated by an inte-
gral. Thus, assuming So is greater than or equal to the average
S so that γ ≥ 0:

�
S	So

e–�(S–So)P�(S)


�
�

So

e–�(S–So) 1
�� 2� e–(S–So)2�(2�2

�
) dS (9)

� e(���)2�2��

���

1
2� e–x2�2dx

� e(���)2�2

2
�

(���)2�2

�

1
�

�y–1�2�e–ydy (10)
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 e(���)2�2

2
�

(���)2�2

�

1
�
� 2
���

�e–ydy

� 1
��� 2� (11)

γ needs to be non-negative in the above formulas so that the
first exponential term in formula (9) does not increase to in-
finity and magnify the error in using a normal distribution to
approximate Pγ (S). If So is less than the average of S, the
large-deviation technique can be used to estimate P(S ≤ So).
However, when So is less than the average, it is sufficient for
our purposes to approximate the distribution P(S) with a
gamma distribution for the variable y = S – Smin, fitted to the
numerically determined average and standard deviation.

The integral in formula (10) corresponds to a gamma dis-
tribution, which can be efficiently determined numerically
(Press et al., 1988, pp. 171–174). Formula (10) can be ap-
proximated analytically by formula (11) when So is not too
close to the average or maximum value of S, i.e. when
γσγ >> 1. However, we have chosen to use formula (10)
rather than formula (11) in our current implementation of this
method for approximating P value.

A final set of approximations are useful for scores near the
minimal score, Smin, but greater than the average, and for
scores near the maximal score, Smax. The normal approxima-
tion of Pγ (S) becomes increasingly inaccurate as the differ-
ence between So and either Smin or Smax becomes small rela-
tive to σγ . For example, when So approaches Smax, γσγ ap-
proaches zero and formula (10) equals 0.5 rather than 1,
which would be the correct result. To improve our estimate
for Pγ (S) when So – Smin < 3σγ, we approximate Pγ (S) with
a gamma distribution for the variable y = S – Smin, rather than
with a normal distribution. To improve our estimate for Pγ (S)
when Smax – So < 3σγ, we approximate Pγ (S) with a gamma
distribution for the variable y = Smax – S.

Applying the large-deviation technique to multiple
sequence alignments

To apply the techniques described above, we need to be able
to calculate efficiently the moment-generating function M(θ)
and its first two derivatives M′(θ) and M′′ (θ) for the statistic
of interest. In this subsection, we describe these calculations
for the statistic NIseq, where N is the total number of se-
quences in the alignment and Iseq is the information content
statistic defined in formula (2). While analytical approxima-
tions would be desirable, a numerical calculation is practical
and is what we describe here.

Since we restrict ourselves to simple alignment models in
which each column is independent, the moment-generating
function only needs to be calculated for a single column since

the overall moment-generating function is only dependent
on Mc, the moment-generating function for an individual
column, and L, the width of the alignment:

M(θ) = Mc(θ)L

Furthermore, since each column is independent, the statistic
NIseq is the sum of an independent component for each column.
Thus, as L becomes large, Pθ(NIseq) approaches a normal dis-
tribution for values of NIseq close to µθ. However, in our experi-
ence, the normal approximation works well for Pθ(NIseq) even
when the width L equals 1 (see Figure 3c and e).

By the definition in equation (3), the moment-generating
function for NIseq for an individual column is:

Mc(�) � �
�ni�N

exp���A

i�1

ni1n
ni�N

pi
� N!
�A

i�1ni!
�

A

i�1

pni
i

(12)

where ni is the occurrence of letter i. The outer summation
is taken over all combinations of the ni summing to N. The
total number of such combinations is (N + A – 1)!/N!/(A – 1)!,
i.e. O(NA – 1). A brute force calculation for M(θ) involving
all these combinations is not too bad for a DNA alignment
where A = 4, but is unacceptable for proteins where there are
20 letters in the amino acid alphabet. Therefore, we use the
following dynamic programming algorithm, whose com-
plexity is only O[(A – 2)N2] in time and O(N) in space.

To simplify our description of this algorithm, we define a
function Mi(θ, n) as the component of the moment-generat-
ing function that is dependent on letter i, given θ and the oc-
currence n of letter i:

Mi(�, n) � exp��n1n
n�N
pi
� pn

i

n!

Thus, the definition of Mc(θ) in equation (12) can be re-
written as:

Mc(�) � �
�ni�N

N!�
A

i�1

Mi(�, ni)

In this algorithm, the contribution of each letter is incorpo-
rated into the calculation for Mc(θ) one at a time. The algo-
rithm creates a matrix �(i,n) which contains the intermedi-
ate calculations of Mc(θ) through letter i and containing n
sequences. Within �(i,n), i varies from 1 through A and n
varies from 0 through N. Mc(θ) will equal �(A,N). For
0 ≤n ≤N, �(1,n) is initialized by the rule:

�(1,n) = N! M1(θ,n)

For 1 < i < A and 0 ≤ n ≤ N, �(i,n) is determined by the rule:

�(i, n) ��
n

j�0

�(i–1, j)Mi(�, n–j) (13)
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Finally,

Mc(�) � �(A, N) ��
N

j�0

�(A–1, j)MA(�, N–j)

To calculate M�
c(�), the algorithm creates a matrix �′(i,n)

which contains the intermediate calculations of M�
c(�) through

letter i and containing n sequences. M�
c(�) is determined analog-

ously to Mc(θ) such that M�
c(�) will equal �′(A,N). For

0 ≤ n ≤ N, �′(1,n) is initialized by the rule:

��(1, n) � N!
�M1(�, n)

��

For 1 < i < A and 0 ≤ n ≤ N, �′(i,n) is determined by the rule:

��(i, n) �

�
n

j�0

���(i–l, j) Mi(�, n–j) � � (i–1, j)
�Mi(�, n–j)

��
� (14)

Finally,

M�
c(�) � �

′(A, N)

��
N

j�0

���(A–1, j)MA(�, N–j) ��(A–1, j)
�MA(�, N–j)

��
�

To calculate M��
c (θ), the algorithm creates a matrix �′′ (i,n)

which contains the intermediate calculations of M��
c  (θ)

through letter i and containing n sequences. M��
c (θ) is deter-

mined analogously to Mc(θ) such that M��
c  (θ) will equal

�′′ (A,N). For 0 ≤ n ≤ N, �′′ (1,n) is initialized by the rule:

�
′′(1, n) � N!

�2M1(�, n)
��2

For 1 < i < A and 0 ≤ n ≤ N, �′′ (i,n) is determined by the
rule:

���(i, n) � �
n

j�0

�� ′′ (i–1, j)Mi(�, n–j) � 2� ′(i–1, j)
�Mi(�, n–j)

��

��(i–1, j)
�2Mi(�, n–j)

��2
� (15)

Finally,

M��
c (�) ��

′′ (A, N)

� �
N

j�0

��′′ (A–1, j)MA(�, N–j) � 2�′(A–1, j)
�MA(�, N–j)

��

� �(A–1, j)
�2MA(�, N–j)

��2
�

Since Mc(θ), M�
c(�) and M��

c (�) can be efficiently deter-
mined for NIseq, we can numerically determine γ, M(γ),
M′(γ), M′′ (γ) and σγ. These values can then be used to ap-
proximate Pγ (NIseq) with either a normal or a gamma dis-

tribution, which can be substituted into equation (8) to esti-
mate the P value for a specified value of NIseq.

A special case, considered by some of our algorithms, is
nucleic acid alignments in which a pattern is assumed to be
symmetrical. In this case, when a word is incorporated into
an alignment, its reverse complement is also added. If one
knows the left half of such an alignment matrix, then one also
knows the right half. If the width L of the alignment is even,
the moment-generating function is:

M(θ) = Mc(2θ)L /2

where Mc() is defined in equation (12). If L is odd, the mo-
ment-generating function is:

M(θ) = Mc(2θ)(L – 1)/2Mcenter(2θ)

where Mcenter(2θ) is the moment-generating function for the
central position of the alignment. Mcenter() differs from Mc()
in two ways. First, Mcenter() substitutes N/2 for N since only
N/2 of the letters in the central position are independent. Sec-
ond, Mcenter() uses an alphabet consisting of only A/2 letters
since each letter of the original alphabet is indistinguishable
from its complement. The a priori probability of one of these
new letters is the sum of the a priori probabilities of the
corresponding complementary letters, which should each
have the same a priori probability.

Approximating the P value numerically

In this section, we describe an alternative method for ap-
proximating the P values of NIseq. This method creates a
table of P values for the statistic after it has been transformed
into integer values. The statistic NIseq is transformed into an
integer value I′ after multiplying NIseq by some factor α:

I′ ≡ int(αNIseq) (16)

in which the ‘int’ function rounds a real number to its closest
integer. α is chosen so that the maximum ( I�max) and minimum
(I�min) values of I′ differ by some desired amount. The greater
the difference between I�max and I�min, the more accurate the
estimation of the P value.

In principle, a probability-generating function, G(x), can be
created for an alignment having a width of L:

G(x) � �
I�max

I��I�min

PL(I�)xI�

in which PL(I′) is the probability of observing the specified
value of I′, i.e. the probability of observing (I′ — 0.5)/α ≤
NIseq < (I′ + 0.5)/α. Thus, the P value for I�o would equal:

�
I�max

I��I�o

PL(I�)
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Staden (1989) described an efficient method for numeri-
cally estimating the probability-generating function for
weight-matrix scores. If the probability-generating function
for the information content of an individual column of an
alignment matrix is known, Staden’s approach can be direct-
ly used to approximate the probability-generating function
for a multi-column alignment matrix. Let P(I′) be the prob-
ability of observing I′, given a single alignment position, i.e.
P(I′) = P1(I′). Let I�m and I�M be the minimum and maximum
values of I′, respectively, for a single alignment position.
PL(I′) can be approximated from P L–  1() and P() using the
following relationship:

PL (I�) 
 �
I�M

j�I�m

P(j)PL–1(I
�–j)

The summation only needs to be taken for values of j for
which P( j) ≠ 0. Let B ≡ I�M � I�m � 1, and let L be the width
of the alignment. For a weight matrix, the distribution anal-
ogous to P(I′) only has A non-zero values. However, for an
alignment matrix, P(I′) may have up to B values. Thus, in the
worst case, the time complexity of this algorithm is O(L2B2).

The probability-generating function for an individual col-
umn of a weight matrix requires the determination of only A
weights and probabilities; thus, its calculation is trivial to do
directly. On the other hand, a brute-force calculation of the
probabilities for the information content of an individual col-
umn of an alignment matrix is much more complex. This
calculation requires a determination for all

(N � A � 1)!
N!(A � 1)!

combinations of N letters taken from an alphabet containing
A letters. This brute force calculation can be practical for
nucleic acids where A = 4. When A is larger, such as 20 for
an amino acid alphabet, the probability-generating function
can be approximated using an algorithm similar to that for
determining the moment-generating function in the previous
section. However, the complexity of the algorithm here is
O[(A – 2)BN 2] in time and O(BN) in space, which are more
complex by a factor of B.

In this algorithm, the probability-generating function is
constructed one letter at a time. The algorithm creates a three-
dimensional matrix, �(i, n, I′), which contains the intermedi-
ate approximation of P(I′) through letter i, containing n se-
quences, and having an intermediate value of I′. Within
�(i, n, I′), i varies from 1 through A and n varies from 0
through N. The range of I′ is dependent on the values of i and
n. P(I′) will be approximately equal to �(A, N, I′).

To simplify our description of the algorithm, we define two
functions. I�i(n) is the integer approximation of the compo-
nent of I′ dependent on letter i:

I�i(n) � int ��n 1n
n�N
pi
�

Pi(n) is the component of the multinomial probability [for-
mula (1)] that is dependent on letter i:

Pi(n) �
pn

i

n!

For 0 ≤ n ≤ N, �(1,n, I′) is initialized by the rule:

�(1, n, I�1(n)) � N! P1(n)

For 1 < i < A and 0 ≤ n ≤ N, �(i,n, I′) is determined by the
rule:

�(i, n, I�) ��
n

k�0

Pi(k) �(i–1, n–k, I�–I�i(k)) (17)

in which the upper and lower limits of k will frequently need
to be lowered and raised, respectively, so that I�–I�i(k) is with-
in a range consistent with i – 1 and n – k. Finally,

P(I�) 
 �(A, N, I�)

��
N

k�0

PA(k) �(A–1, N–k, I�–I�A(k))

The overall time complexity of this method for numerically
determining probability-generating functions is O[(A – 2)BN 2

+ L2B2]. Relative to the large-deviation method described in the
previous section, this method has the disadvantage that its com-
plexity is dependent on the value of B and the width L of the
alignment. It has the advantage over the previous method in that
its accuracy can be increased by increasing the value of B. Fur-
thermore, it generates a table for the full range of information
contents rather than just for an individual information content.
The speed of this method can be increased by creating a table
of probabilities only for scores greater than a specified value.
The greater this minimum score, the greater the speed for the
same level of accuracy.

For our alignment algorithms, the large-deviation tech-
nique described in the previous section is practical under a
wider range of conditions. Table 1 demonstrates the differ-
ence in speed between the two algorithms under various
conditions. We have recently realized that the Fast Fourier
Transform algorithm and the Convolution Theorem (Press et
al., 1988, Chapter 12) can be applied to formulas (13), (14),
(15) and (17) to greatly reduce the time complexity for our
algorithms to calculate P values. Thus, the calculation of the
moment-generating function in the large-deviation tech-
nique can be done in time O[(A – 2)N log2 N] rather than
O[(A – 2)N2], and the numerical calculation of P value can
be done in time O[(A – 2)BN log2 (BN) + LB log2(LB)] rather
than O[(A – 2)BN 2 + L2B2]. We have not yet incorporated the
Fast Fourier Transform into our programs.
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Table 1. The time required to determine the P value for DNA sequence
alignments containing various numbers of sequences and having various
widths. Shown are the time to determine a table of P values numerically
(NUM) and the time to determine an individual P value using the
large-deviation (LD) method. Equiprobable DNA alphabets were used in
all examples. NI seq was multiplied by 10 before converting to an integer
for determining P values numerically [formula (16)]. LD times are the
average of 10 determinations each at a different value of NIseq. Programs
were run on a SUN Ultra 30 workstation with a 296 MHz processor

Number of Width Time Time
sequences NUM LD NUM/LD

10 1 0.01 s 0.005 s 2

10 10 0.1 s 0.005 s 20

10 100 12 s 0.005 s 2400

100 1 0.2 s 0.3 s 0.6

100 10 51 s 0.3 s 170

100 100 1.6 h 0.3 s 19 000

1000 1 3 min 32 s 6

1000 10 2 h 32 s 230

Counting the number of possible alignments

The P value of an individual alignment is not usually suffi-
cient to describe the statistical significance of that alignment.
We are generally interested in the overall best alignment
given a typically huge number of possible alignments that
can be constructed from a set of sequence data. For example,
an alignment of width L, having a contribution of exactly one
word from each of N sequences of length Q, can be chosen
in (Q – L + 1)N ways. More generally, an alignment may
contain at most one word from each of N sequences. Let n be
the number of words in the alignment, let Q′ = (Q – L + 1)
be the number of possible starting positions in each se-
quence, and let �(n) be the number of possible alignments.
Given that n ≤ N, an alignment can be chosen in the following
number of ways:

�(n) � N!
n!(N � n)!

(Q�)n (18)

Another generalization allows each sequence to contribute
one or more words to the alignment. We derive a formula for
�(n), in which n ≥ N, with the aid of a generating function—
a polynomial in which the coefficient of xn is �(n). In the
following derivation, we have permitted alignments to con-
tain overlapping words so that the alignment width L only
enters the results through Q′. This assumption simplifies the
problem, but gives an overestimate of �(n) if overlaps are
not permitted.

The coefficients of the following polynomial are the
number of ways n words can be chosen from a single se-
quence for 1 ≤ n ≤ Q′:

(x � 1)Q�–1 ��
Q�

n�1

Q�!
n!(Q�–n)!

xn

Therefore, the coefficients of the following polynomial are
the number of ways n words can be chosen from a set of N
sequences when each sequence must contribute at least one
word to the total of n words:

�
NQ�

n�N

�(n)xn

� �(x � 1)Q� � 1�
N

��
N

i�0

(–1)N–i N!
i!(N–i)!

(x � 1)iQ�

��
NQ�

n�N

�
N

i	 n

Q �

(–1N–i)� N!
i!(N–i)!

�� (iQ�)!
n!(iQ�–n)!

�xn

Thus, given that n ≥ N, an alignment can be chosen in the
following number of ways:

�(n) ��
N

i	 n
Q�

(–1N–i)� N!
i!(N–i)!

�� (iQ�)!
n!(iQ�–n)!

� (19)

In formula (19), the dummy variable i is initialized to the
smallest integer ≥ n/Q′.

Formulas (18) and (19) give the same result when n = N.
If the lengths of each of the N sequences are not identical, we
approximate (Q – L + 1) by its geometric mean so that for-
mulas (18) and (19) are exact only when each sequence con-
tributes exactly one word to the alignment (i.e. n = N).

An even less restrictive alignment constraint allows each
of the N sequences to contribute zero or more words to the
alignment. If the ith sequence has a length of Qi, then there
are a total of NT � �

N
i�1(Qi –L � 1) possible starting posi-

tions for each of the n words in the alignment. Therefore, the
alignment can be chosen in

�(n) �
NT!

n!(NT � n)!
(20)

ways if the words contained in the alignment are allowed to
overlap.

If each alignment was independent of each other align-
ment, the number of possible alignments (�) could be com-
bined with the P value (Pmat) for an individual alignment
matrix to determine an overall P value (Poverall):

Poverall = 1 – (1 – Pmat)� (21)

≈ 1 – exp(–� Pmat) (22)

≈ � Pmat (23)

The approximation in formula (22) assumes that Pmat << 1
and corresponds to an extreme value distribution. If the lower
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limit of integration in formula (9) is set to a value So + ε close
to So, the approximation for P value corresponding to for-
mula (11) generalizes to:

P(S 	 So � ε) 
 �M(�)
e�So
� e–�ε

��� 2�

When this approximation for P value is substituted into for-
mula (22), we obtain the P value for the type of extreme value
distribution that Claverie (1994) observed for the scores of
weight matrices. However, this approximation and the pre-
cise extreme value distribution should only be accurate with-
in a localized region around the score So.

The approximation in formula (23) further assumes that
�Pmat << 1. Although �Pmat is only approximately equal
to the overall P value, it is exactly equal to the expected
number of alignments having an information content greater
than or equal to the observed value of Iseq, even if the align-
ments are not independent. However, a lack of independence
will increase the standard deviation of this expectation. We
call this expectation the expected frequency of the informa-
tion content, given the width and the number of sequences in
the alignment.

Since alignments are generally not independent, we use the
expected frequency [formula (23)] to compare alignments
rather than the overall P value [formula (21) or (22)]. The
expectation will be larger than the overall P value and, there-
fore, is a more conservative measure of statistical signifi-
cance than is the overall P value. Both the expectation and
the overall P value allow the comparison of alignments hav-
ing differing widths and containing differing numbers of se-
quences. Multiplying the expectation or overall P value by
the number of different widths and the maximum number of
sequence words being considered would conservatively ac-
count for these two additional degrees of freedom.

In principle, the P value of an individual alignment and the
overall P value can be determined by repeatedly aligning
randomized sequences. However, in general, such pro-
cedures cannot be repeated enough to observe the very small
P values and expectations seen in practice (e.g. Table 2). In
the case of the overall P value, the randomized-sequence ap-
proach is further limited because practical alignment algo-
rithms are not guaranteed to find the highest scoring align-
ment, unless the amount of sequence data is relatively small.
With randomly generated sequences, multiple alignment al-
gorithms will probably fail to find the highest scoring align-
ment because too many alignments will have scores close to
this mathematically optimum alignment. Thus, repeatedly
aligning randomized sequences is not expected to work well
to determine accurate overall P values, although this pro-
cedure can still give insight into whether a particular value
of Iseq is expected by chance.

Algorithms for determining the alignment having the
optimum information content

Our ultimate goal is to apply our models and statistics for
sequence alignments to identify optimal alignments and de-
termine consensus patterns describing functional relation-
ships. Our models and statistics are applicable to various al-
gorithms for determining multiple-sequence alignments, e.g.
expectation maximization (Lawrence and Reilly, 1990),
Gibbs sampling (Lawrence et al., 1993) and our greedy algo-
rithm (Stormo and Hartzell, 1989; Hertz et al., 1990). The
goal of all these algorithms is to determine a sequence align-
ment that maximizes a log-likelihood statistic. In this section,
we describe the current version of our greedy algorithm.

Table 2. The most statistically significant alignments found by the
CONSENSUS program when aligning CRP-binding sequences using a
priori probabilities of 30% for A and T, and 20% for G and C

Width Number of P value Expected
sequences frequency

16 17 8 × 10–50 8 × 10–10

17 4 5 × 10–13 1 × 10–1

18 17 3 × 10–48 2 × 10–8

19 6 1 × 10–18 3 × 10–2

20 19 2 × 10–54 5 × 10–11

21 6 5 × 10–19 8 × 10–3

22 22 3 × 10–60 2 × 10–11

23 9 2 × 10–26 2 × 10–3

24 21 4 × 10–57 2 × 10–10

25 9 7 × 10–28 6 × 10–5

26 21 2 × 10–56 9 × 10–10

27 6 2 × 10–18 2 × 10–2

28 21 1 × 10–55 3 × 10–9

29 12 7 × 10–32 7 × 10–3

30 21 6 × 10–55 8 × 10–9

We previously described an algorithm which sought an
alignment that maximized the information content [formula
(2)], but was dependent on the order with which the se-
quences were presented to the program (Stormo and Hart-
zell, 1989; Hertz et al., 1990). Here, we describe two related
alignment algorithms that are order independent. The first
algorithm, like our previously published algorithm, requires
the user to specify the width of the pattern being sought based
on previous biochemical knowledge. The second algorithm
determines the width of the alignment, but requires that the
user adjust a bias that is subtracted from the information con-
tent so that the average score is negative. To use these algo-
rithms effectively, the width of the pattern needs to be varied
either directly, as in the first algorithm, or indirectly by vary-
ing the bias, as in the second algorithm. The expected fre-
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quency statistic described in the previous section can then be
used to compare alignments having differing widths and
containing differing numbers of sequences.

As with all common multiple alignment algorithms, our
approach is a compromise between the need to keep the algo-
rithm computationally practical and the desire to obtain the
mathematically optimum alignment. Thus, our algorithms
are not guaranteed to give the mathematically optimum
alignment for alignments containing many sequences.

The user specifies the width of the alignment

We first describe our algorithm in which the user sets the
width directly. This algorithm is implemented in a program
called CONSENSUS. The user first designates the maxi-
mum number of alignments that can be saved (e.g. 100 or
1000). Typically, less alignments are ultimately saved be-
cause some will be identical. Besides the width, there are
various constraints the user can impose. The following three
alternatives correspond to the constraints, described in the
previous section, that control the number of times each se-
quence can contribute to an alignment:
1. Each sequence can contribute at most one word to the

alignment [corresponds to formula (18)].
2. After each sequence has contributed exactly once to the

alignment, sequences can contribute additional words
to the alignment [corresponds to formula (19)].

3. Each sequences can contribute zero or more words to
the alignment [corresponds to formula (20)].

For alternatives (2) and (3), the user also needs to decide by
how much words from the same sequence should be allowed
to overlap.

When aligning nucleotide sequences, the user also needs
to decide whether to include the complementary sequence.
If the complementary sequence is included, the user needs to
decide whether complementary words will be allowed in the
same alignment. If complementary words are allowed in the
same alignment, the user needs to decide whether to require
the pattern to be symmetrical, thus requiring the inclusion of
complementary words in each alignment.

Figure 2 gives a simplified example of the alignment algo-
rithm when aligning exactly one word from each sequence.
The following is a more general description of how the align-
ment algorithm proceeds.
CYCLE 1 Create a one-sequence alignment matrix for each

sequence word. If the user has sufficient prior
information, the initial set of one-sequence
alignment matrices can be created from a subset
of the total sequence data. Such user intervention
can be essential if there is a large amount of se-
quence data.

CYCLE 2 Subject to the constraints determined by the user,
determine all possible pairwise alignments of the

one-sequence alignment matrices and the re-
maining sequence words to create alignment ma-
trices representing two-sequence alignments.
Score the new alignment matrices according to
their information content. The highest scoring
two-sequence alignment matrices, derived from
each one-sequence alignment matrix, are saved
up to the user-specified number of alignments.

CYCLE 3 Each alignment matrix saved from CYCLE 2 is
paired with each word not already contained in
the alignment matrix, and the new three-se-
quence alignment matrices are scored according
to their information content. The highest scoring
three-sequence alignment matrices, derived
from each two-sequence alignment matrix, are
saved up to the user-specified number of align-
ments.

CYCLE N Each alignment matrix saved from CYCLE (N –
1) is paired with each word not already contained
in the alignment matrix, and the new N-sequence
alignment matrices are scored according to their
information content. The highest scoring N-se-
quence alignment matrices, derived from each
(N – 1)-sequence alignment matrix, are saved up
to the user-specified number of alignments.

The algorithm continues until each sequence has contrib-
uted exactly once to each saved alignment or until some user-
determined number of words contributes to each alignment.
The user can also direct the algorithm to quit when it appears
to have already identified the alignment having the minimum
expected frequency. This is decided if a user-specified
number of cycles passes after creating the alignment that cur-
rently has the minimum expected frequency. The program
can print the highest scoring alignment matrix from each
cycle; thus, a collection of alignments having differing
numbers of words can be printed. These alignment matrices
are ordered according to their expected frequency. The pro-
gram can also print the alignment matrices saved after the last
cycle.

Whenever two alignments are identical, only one of the
two alignments is saved. Each saved alignment is summar-
ized in a matrix whose elements are the number of occur-
rences of letters. Therefore, each pairwise alignment in-
volves the aligning of a sequence against a matrix and, thus,
is similar in concept to aligning a protein sequence against
the profile of a protein family (Gribskov et al., 1990).

The user specifies a standard deviation bias

We have also developed a similar algorithm in which the user
does not explicitly specify the width of the alignment. This
algorithm is implemented in a program called WCONSEN-
SUS. A property of the information content is that it is always
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Fig. 2. An example of the algorithm for finding sequence alignments of a fixed width, assuming each sequence contributes exactly once to the
final alignment. Alignments of width 4 are being sought from the three single-stranded DNA sequences listed at the top. Each base has an a
priori probability of 25%. Cycle 1: For simplicity, only the alignment matrix originating from the first 4-mer of the first sequence is shown.
In the actual program, one alignment matrix would be created for each of the six 4-mers that exist in the three sequences of length five. Cycle
2: The four matrices that can be created by adding an additional sequence to the matrix shown in cycle 1. We designated that a maximum of
six alignments be saved after the first cycle; therefore, only one descendant of the parental matrix shown in cycle 1 can be saved. The saved
matrix is surrounded by the heavy line. If all six matrices created in cycle 1 were followed, four matrix alignments would be saved after cycle
2 because two redundant matrices will be eliminated. Cycle 3: The two matrices that can be created by adding a third sequence to the saved
matrix shown in cycle 2. The saved matrix is surrounded by the heavy line. If all the matrices created in cycle 1 were followed, five matrix
alignments would be saved after cycle 3 because one redundant matrix will be eliminated. Thus, the alignment shown is not the highest scoring.

non-negative. However, for this local alignment algorithm to
work, we need the score to be negative on average so that an

interesting alignment can appear as a region of positive in-
formation. This is similar to the constraint on the scores used
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Fig. 3. The ratio of the P value calculated by the large-deviation (LD) method to the P value determined numerically (NUM) for various values
of NIseq. The horizontal axis is the numerically determined P value, which is assumed to be accurate. The vertical axis is the ratio. For simplicity,
(d) and (f) exclude the left-hand portion of the graph where the ratio is always between 0.9 and 1.1. The letters of the equiprobable DNA alphabet
each have an a priori probability of 0.25. The letters of the skewed DNA alphabet have a priori probabilities of 0.1, 0.2, 0.3 and 0.4.

in the algorithm of Smith and Waterman (1981). We force the
scores to be negative on average by subtracting a positive
bias from the information score for each column of the align-

ment. Higher biases decrease the width of the highest scoring
alignment.
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We subtract two biases from the information content for
each position of an alignment. The first bias is the average
information content expected from a collection of N letters
occurring with the designated a priori probabilities, where N
is the number of sequences in the alignment. This correction
causes the score expected of an arbitrary alignment to equal
zero. The score determined by subtracting this first bias ap-
proximates the information content of the corresponding pat-
tern as the number of sequences in the alignment goes to in-
finity (Schneider et al., 1986). Therefore, we call this score
the adjusted information content.

The second bias subtracted from each position is some
multiple of the standard deviation of the information content
expected from a collection of N letters occurring with the
designated a priori probabilities. Subtraction of this second
bias, in addition to the first, is what causes the expected align-
ment score to be less than zero. During the alignment algo-
rithm, we call the score determined by subtracting these two
biases from the information content the crude information
content.

The number of standard deviations to subtract is not ex-
pected to be the same for all alignments. We try a range of
values, such as 0.5, 1, 1.5 and 2, and then compare the vari-
ous alignments identified according to their expected fre-
quency or according to empirical constraints. Our standard-
deviation bias, which is a simple multiple of the alignment’s
width, should not be confused with the standard deviation of
the information content, which is a multiple of the square
root of the alignment’s width.

The algorithm, in which the user specifies a standard-
deviation bias, is very similar to the algorithm in which the
alignment width is explicitly set. However, it differs in the
following two ways.
1. The algorithm seeks to maximize the crude informa-

tion content rather than the true information content.
2. The saved alignment matrices include the alignment

information from the sequence ends not included in the
local region of high crude information content. There-
fore, these end regions can become incorporated into
the local alignment as additional sequences are added.
Thus, a single alignment matrix can contain informa-
tion on multiple motifs that are spaced the same in each
of the aligned sequences. However, each alignment
printed out by the program only contains a single peak
of high crude information content.

Results

The accuracy of the P value approximations

The large-deviation method for determining the P value was
compared to the numerical method. We used four different
distributions of letters: an equiprobable four-letter DNA-like

alphabet in which each letter had an a priori probability of
0.25; a highly skewed four-letter DNA-like alphabet in
which letters had a priori probabilities of 1/10, 2/10, 3/10,
4/10; an equiprobable 20-letter protein-like alphabet in
which each letter had an a priori probability of 0.05; and a
highly skewed 20-letter protein-like alphabet in which letters
had a priori probabilities of 1/210, 2/210, …, 20/210.

Since the results for the DNA-like and protein-like al-
phabets are similar, we only show results for the DNA-like
alphabet (Figure 3). For almost all examples, we multiplied
NIseq by 1000 before converting the statistic to an integer for
the numerical method; thus, we consider the P values calcu-
lated by the numerical method to be very accurate. The ex-
ception was for the alignments containing 100 sequences and
having a width of 10, in which we only multiply by 100 to
reduce the complexity of the calculation (e.g. Figure 3f).

As expected, because the estimate of Pγ () is based on the
Central Limit Theorem, the accuracy of the large-deviation
method increases as the width of the alignment increases.
However, the method is fairly accurate even with an align-
ment width of one (Figure 3c and e). As the number of se-
quences and the width increase, errors >10% only appear at
the very largest information contents where the P value is the
smallest (Figure 3d and f). For alignments containing very
few sequences, the results are more accurate for the skewed
a priori distribution, presumably because of the greater
number of different values of NIseq (Figure 3a versus 3b).

The decrease in accuracy as the information content ap-
proaches its maximum value is not surprising. The normal
approximation to Pγ () will become increasingly bad as the
distance between its average and the minimum or maximum
values of NIseq becomes small relative to its standard devi-
ation. To reduce this problem, our algorithm uses a gamma
distribution to estimate Pγ () at the lower and higher values
of NIseq where σγ is greater than one-third the distance to
either the minimum or maximum value of NIseq. While the
normal distribution ranges from minus infinity to plus infin-
ity, the gamma distribution has one finite end; thus, we sus-
pected it would be a better estimate of Pγ () when its average
is close to a finite maximum or minimum.

The gamma distribution is somewhat superior to the nor-
mal distribution at the lower values of NI. This result is ex-
pected since a type of gamma distribution (i.e. the χ2 dis-
tribution) is predicted by the Central Limit Theorem. Un-
fortunately, the gamma distribution does not seem to
improve the estimate of Pγ () at the higher values of NIseq.
Perhaps the discrete nature of the true distribution becomes
increasingly important for Pγ () as its average approaches the
maximum value of NIseq. Thus, neither the continuous nor-
mal nor the continuous gamma distribution are able to cap-
ture the properties of the true, discrete distribution.
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Aligning DNA-binding sites of the E.coli CRP
protein

The E.coli cyclic AMP receptor protein (CRP) is responsible
for activating the transcription of many genes and repressing
the transcription of a few (Collado-Vides et al., 1991). CRP
works by directly binding to the DNA in the promoter region.
This protein also goes by the name catabolite gene-activator
protein (CAP).

A collection of 18 CRP-regulated genes, each 105 base
pairs (bp) long, was aligned with the current version of our
CONSENSUS program. Based on experimental evidence,
these 18 sequences contain 24 putative binding sites. This set
of sequences has proven useful for testing our original
greedy alignment algorithm (Stormo and Hartzell, 1989) and
the original expectation-maximization alignment algorithm
(Lawrence and Reilly, 1990).

Since CRP binds as a dimer, the program was directed to
assume that the binding site was symmetrical. Thus, if a se-
quence word was incorporated into an alignment, its reverse
complement was also incorporated. Since some of the se-
quences had more than one CRP binding site and some of the
experimentally determined sites may be incorrect, the pro-
gram was directed to allow each sequence to contribute zero
or more words to the alignment. However, each word had to
be separated by at least 10 bp (i.e. one helical twist of the
DNA). The width of the alignment was varied from 16
through 30 bp. Alignments were allowed to have up to 40
complementary word pairs.

Although the frequency of each base in the E.coli genome
is essentially the same, promoter regions are AT rich. In our
analysis, we tried both genome-like a priori probabilities of
25% and the frequencies in the dataset being aligned, i.e.
30% for A and T, and 20% for G and C. When the genomic
frequency of 25% was used as the a priori probability for
each base, the optimum alignment contained 14 out of the 24
putative sites, but also included 16 other AT-rich sequences
in the alignment. When the observed frequencies were used
as the a priori probabilities, the optimum alignment con-
tained 19 out of the 24 putative binding sites. This alignment
also contained three sites not believed to be CRP binding
sites; however, each of these three sites overlapped a putative
site.

The optimum alignment was 22 bp wide and had an ex-
pected frequency of 2 × 10–11 (Table 2). Because the align-
ments were required to be symmetrical, the alignments with
odd widths are substantially different from the alignments
with even widths. As a result, the alignments having odd
widths have substantially higher expected frequencies than
those having even widths. The pattern identified is similar to
the one we (Stormo and Hartzell, 1989) and others (Law-
rence and Reilly, 1990) have previously identified for the
CRP binding site. The important difference is the statistics

that allow the user to judge whether a pattern is statistically
significant and to compare alternative alignments. By using
the expected frequency to compare alignments, the user can
impose less assumptions on the width of the pattern and on
the number of sites contained in the alignment.

Discussion

Information content and related statistics have proven their
usefulness for identifying and analyzing sequence align-
ments (Schneider et al., 1986; Berg and von Hippel, 1987;
Stormo and Hartzell, 1989; Hertz et al., 1990; Lawrence and
Reilly, 1990; Lawrence et al., 1993). However, a major defi-
ciency has been the lack of an accurate measure of the P
value of a particular information content. In this paper, we
use large-deviation statistics and an efficient algorithm for
determining the moment-generating function to estimate the
P value of an information content accurately. The large-devi-
ation approach is also applicable to the scores of weight ma-
trices and, in this regard, can be used to generalize some of
the statistical results presented in Berg and von Hippel
(1987).

In the results presented here, we have assumed that the a
priori probability of each letter of a sequence is independent
and identically distributed. Although this assumption is not
too bad an approximation for the E.coli genome, it is clearly
deficient for eukaryotic genomes. We are currently working
on extending our approach to eliminate this assumption. The
simple alignment matrix (Figure 1) explicitly assumes that
each position of an alignment pattern contributes indepen-
dently to the activity that has been selected for. In principle,
we can construct more complex alignment matrices that in-
corporate information on the correlations between the posi-
tions of an alignment pattern (Hertz and Stormo, 1995).

Biologically related sequences can also contain insertions
and deletions relative to each other. We have developed
alignment matrices and information content formulas that
account for gaps (i.e. deletions) in alignment matrices (Hertz
and Stormo, 1995). When the gaps at each position of an
alignment are assumed to be independent, our large-devi-
ation method can be directly applied to calculate statistical
significance. However, gaps are generally expected to be
correlated with any gaps in adjacent positions. We are cur-
rently extending our method to calculate the statistical sig-
nificance of alignment matrices containing information on
the correlations between adjacent gaps.

Our procedure for estimating the P value is not limited to
the information content of sequence alignments. It is directly
applicable to other hypothesis testing problems in which
variables are independent and sampled from a finite al-
phabet. The statistic can be anything in which the overall
statistic is the sum of components that are dependent on only
an individual letter (e.g. the χ2 statistic).
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