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Abstract

Motivation: Molecular biologists frequently can obtain
interesting insight by aligning a set of related DNA, RNA or
protein sequences. Such alignmentscan beused to determine
either evolutionary or functional relationships. Our interest
is in identifying functional relationships. Unless the se-
guences are very similar, it is necessary to have a specific
strategy for measuring—or scoring—the relatedness of the
aligned sequences. If the alignment is not known, one can be
determined by finding an alignment that optimizes the
scoring scheme.

Results: We describe four components to our approach for
determining alignments of multiple sequences. First, we
review a log-likelihood scoring scheme we call information
content. Second, we describe two methods for estimating the
P value of an individual information content score: (i) a
method that combines a technique from large-deviation
statistics with numerical calculations; (ii) a method that is
exclusively numerical. Third, we describe how we count the
number of possible alignments given the overall amount of
sequence data. This count is multiplied by the P value to
determine the expected frequency of an information content
score and, thus, the statistical significance of the correspon-
ding alignment. Satistical significance can be used to
compare alignments having differing widths and containing
differing numbers of sequences. Fourth, we describe a
greedy algorithmfor determining alignments of functionally
related sequences. Finally, we test the accuracy of our P
value calculations, and give an example of using our
algorithm to identify binding sites for the Escherichia coli
CRP protein.

Availahility: Programs were developed under the UNIX
operating system and are available by anonymous ftp from
ftp://beagle.col orado.edu/pub/consensus.

Contact: hertz@colorado.edu

Introduction

Functionally related DNA or protein sequences are generally
expected to share some common sequence elements. For

example, a DNA-binding protein is expected to bind related
DNA sequences. The pattern shared by a set of functiondly
related sequences is commonly identified during the process
of digning the sequencesto maximize sequence conservation.

Central toany alignment isthemethod being used to model
the alignment. The god of the model is to summarize the
alignment so that the collection of sequences can be de-
scribed more concisely than smply listing al the sequences.
The smplest and oldest method for describing a sequence
alignment is the consensus sequence, which contains the
most highly conserved letter (i.e. base for DNA or amino
acid for protein) at each position of the alignment. However,
most alignments are not limited to just asingle letter at each
position. At some positions of an alignment, any letter may
be permissible, athough someletters may occur much more
frequently than others.

If the sequences are assumed to be conserved becausethey
have not had time to diverge completely since splitting from
acommon ancestor, then an alignment model incorporating
an evolutionary tree is appropriate. Our interest is in se-
guences that are related because of their common function.
Thus, we use a matrix model which does not include phy-
logenetic information. The simplest matrix model lists some
measure of the desirability of each letter at each position of
the alignment.

One of the simplest types of matrices is the alignment
matrix, which lists the number of occurrences of each letter
at each position of an alignment (e.g. Figure 1a). Another
simple type of matrix is the weight matrix, whose elements
aretheweightsused to score atest sequenceto measure how
close that sequence word matches the pattern described by
the matrix (e.g. Figure 1b). A test sequenceisaigned along
the weight matrix, and its scoreis the sum of the weightsfor
the letter aligned at each position. Weights can be derived
from the alignment matrix (Staden, 1984; Hertz et al., 1990;
Tatusov et al., 1994) or determined experimentally (Stormo
et al., 1986; Fieds et al., 1997).

Matrices can aso describe more complex patterns that
contain gaps (i.e. sequences contain insertions and deletions
relative to each other) or in which different positions are
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a) Alignment Matrix

b) Weight Matrix

A ATTGA

A GGTCOC

A GGATG

AGGCGT
1 2 3 4 5 6 1 2 3 4 5 6
A4 1 0 1 0 1 i i ) [N+ D) fi Al o 16 0 16 0
cfjo o0 0 1 1 1 i Di C|-16-16-16 0 0
Glo 3 3 0 2 1 G }-1.6[.96][.96]-1.6[.59] 0
TJo o0 1 2 1 1 T |-1.6-1.6 0 0 0
consensus: A G G T G N test sequence: A G G T G C

Fig. 1. Examples of the simple matrix model for summarizing a DNA aignment. (a) An alignment matrix describing the alignment of the four
6-mers on top. The matrix contains the number of times, ny j, that letter i is observed at position j of this dignment. Below the matrix is the
consensus sequence corresponding to the alignment (N indicates that there is no nucleotide preference). (b) A weight matrix derived from the
adignment in (8). The formulaused for transforming the alignment matrix to aweight matrix is shown above the arrow. Inthisformula, N isthe
total number of sequences (four in this example), p isthe a priori probability of letter i (0.25 for all the basesin thisexample) and fi j = ry j/N
isthe frequency of letter i at position j. The numbers enclosed in blocks are summed to give the overall score of the test sequence. The overdll
score is 4.3, which is also the maximum possible score with this weight matrix.

correlated with each other (Hertz and Stormo, 1995). How-
ever, here, we are only concerned with sequencesthat can be
aligned without insertions and deletions. Furthermore, we
assume that the positions of an aignment function indepen-
dently according to whatever biochemical criteriaareused to
select the underlying, functionally related sequences. Thus,
we will only be discussing the smplest matrix model, asil-
lustrated in Figure 1.

A good aignment is assumed to be one whose alignment
matriX israrely expected to occur by chance. A standard stat-
isticfor scoring therelativelikelihood of analignment matrix
is the log-likelihood ratio. We compare alignments using a
variant of the log-likdihood ratio we cdl information
content and determine alignments from functionally related,
unaligned sequences using a greedy agorithm (Stormo and
Hartzell, 1989; Hertz et al., 1990).

A limitation in the use of information content has been a
lack of good estimates of the statistical significance of ob-
serving aspecificinformation content. In thispaper, wepres-
ent an efficient method for calculating the P value of an in-
formation-content score. In our case, the P valueisthe prob-
ability of obtaining an information content greater than or
equal to the observed value, given the number of sequences
in the alignment and its width. This method combines nu-
merical calculations with a technique from large-deviation
statistics. We aso present a slower, exclusively numerical
method for calculating the P value.

Next, we describe how we estimate the number of possible
alignmentsdueto theamount of sequencedata. Thisestimate

iscombined with those of P valueto arrive at an expectation
for observing a particular information content or greater. Fi-
nally, we describe the latest version of our greedy algorithm
for aigning functionally related sequences. This algorithm
has been substantially enhanced since its earliest version
(Stormoand Hartzell, 1989; Hertz et al., 1990). Weal so pres-
ent an example of using our algorithm and statisticsto align
DNA-binding sites of the Escherichia coli CRP protein.

The distinction between the alignment model and the
alignment algorithm isimportant. For example, expectation
maximization (Lawrence and Reilly, 1990) and Gibbs
sampling (Lawrence et al., 1993) are aternative algorithms
that have been used to align DNA and protein sequences.
However, these dternative a gorithms were used with aign-
ment models and log-likelihood statistics intimately related
to those used by us. Thus, our calculations of statistical sig-
nificance are applicable to these other common aignment
algorithms,

Information content of an alignment matrix

In our comparison of alignment matrices, we assumethat the
letters of a sequence are independent and identically distrib-
uted. Thus, thea priori probability of asequence of |ettersis
the product of the a priori probability of the individua
letters. Theapriori probability of theindividual lettersmight
bethe overall frequency of theletterswithin all sequences of
an organism (e.g. the genomic frequency of the nuclectide
bases) or the frequency within asubset of sequences, such as
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the frequency in the data set being aligned. Given the as-
sumption that the distribution of letters is independent and
identically distributed, the probability of an alignment matrix
is determined by the multinomial distribution:

H[HA ﬂp g ] (L)

|1|JI

wherei refersto the rows of the matrix (e.g. the bases A, C,
G, T for a DNA aignment), j refers to the columns of the
matrix (i.e. the positions of the letters within the alignment
pattern), A is the total number of letters in the sequence al-
phabet (four for DNA and 20 for protein), L is the totd
number of columnsin the matrix (six in Figure 1), p isthe
apriori probability of letter i, ny j isthe occurrence of letter
i a position j, and N is the total number of sequencesin the
alignment (four in Figure 1).

Our assumption isthat the most interesting alignments are
those whose | etter frequencies most differ from the a priori
probabilities of the letters. The most commonly used
measures for scoring the divergence from the a priori prob-
abilitiesof aset of lettersarethe x2 statistic and thelog-likeli-
hood ratio. In our work, we use statistics based on thelog-li-
kelihood ratio rather than the more ad hoc X2 statistic. The
standard log-likelihood ratio statistic is

log-likelihood ratio = Z Z nAng b

j=11i=
wheref; j = iy j/Nisthefrequency that letter i occursat posi-

tionj suchthat >, f;; = 1. Whenthevalueof f; j isclose
top, —2timesthelog-likelihood ratio isapproximately equal
to the x2 statistic. Under these conditions, this product will
have a distribution approximated by the x?2 distribution with
L(A—1) degrees of freedom [Wilks (1938) and discussed in
many introductory statistics books].

The statistic we use is obtained by dividing the log-likeli-
hood ratio by —N. We call this statistic the information con-
tent of the sequence aignment and abbreviate it as | gy

A
Z Z )
j=1i=
This normalized log-likelihood ratio has gone by various
other names according to the perspective of those who have
used it. When motivated by information theory, thisformula
is cdled the Kullback—Leibler information (Kullback and
Leibler, 1951) or relative entropy. When derived from large-
deviation principles, itiscalled thelarge-deviation ratefunc-
tion (Bucklew, 1990).
lseq is also related to thermodynamics. In particular, the
information content of DNA sequences that are bound by a
common protein has been related to the thermodynamics of
the protein-DNA interaction. |sq measures a relationship

between the average AG of the protein binding a functional
DNA siteand the AG of the protein binding an arbitrary DNA
sequence (Berg and von Hippel, 1987; Stormo, 1988; Stor-
mo and Yoshioka, 1991; Fields et al., 1997; Stormo and
Fields, 1998). Thus, |« is a measure of the discrimination
between the binding of a functional DNA sequence and an
arbitrary DNA sequence. The ‘seq’ subscript indicates that
formula (2) isthe information content derived from the stat-
istical properties of a sequence aignment. In Fields et al.
(1997), a closely related information content is discussed,
, that is derived through thermodynamics.

Formula (2) has various properties that satisfy intuitive
ideas of the information content of an alignment. Equation
(2) is ameasure of the distance from the center of the dis-
tribution where fi j = p. When fi ; =, the distanceis at a
minimum and equal s zero. The distance is maximized when
the least expected letter occurs exclusively, i.e. fy j = 1 and
pn<p for al vauesof i. Schneider et al. (1986) noticed that
e s gpproximately equd to the frequency with which the
binding sites for a DNA-binding protein occur within the
E.coli genome. We (Hertz and Stormo, 1995) have since
come up with amore precise description of thisrelationship:
e'=aisan upper limit to the expected frequency with which
the sequence words within an alignment occur in random
sequences.

The P value of an information content

A statistic such asinformation content is not an end in itself.
Weultimately wishto caculatethe P valueof thestatistic, i.e.
the probability of observing an aignment having the ob-
served information content or greater, given thewidth of the
alignment and the number of sequencesintheaignment. As
discussed in the previous section, we assume that the prob-
ability of a specific letter being observed at any position of
arandom sequenceisequal tothat letter’sa priori probability
and is independent of the occurrence of any other |etter.
Thus, the null model for the alignment matrix isthat the dis-
tribution of letters in each alignment column is an indepen-
dent multinomial distribution [formula (1)].

Under the above assumptions, when the information con-
tent is small and the number of sequences is large, 2Nl g
tends to a x2 distribution with L(A — 1) degrees of freedom
since Nl gy isalog-likelihood ratio (discussed in many in-
troductory statistics books). Unfortunately, our conditions
generdly involve very large scores and frequently few se-
quences, thus, the x2 distribution tendsto give poor probabil -
ity estimates.

However, we are able to aobtain very accurate estimates of
the P value using atechnique from large-deviation statistics.
Similar techniqueshave been used to determinethe statistica
significance of other types of biologicaly interesting se-
guence patterns (Karlin and Altschul, 1990; Dembo et al.,
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1994). In the next section, wefirst give ageneral description
of the technique adapted from the description in Bucklew
(1990, Chapter V1) and then describe how we apply it to our
particular problem. In the section following that description,
we describe anumerical method for determining the P vaue.
In the Results, we test the accuracy of the large-deviation
method for determining P value against that obtained with
the numerical method.

A large-deviation technique for
P value

The general method

In this subsection, we call our statistic Sto emphasize that
this part of the method is applicable to any statistic and not
justinformation content. Our goal isto determinethe P value
when Shasavaue of S,. Let P(S,) be the probability of ob-
serving an Swith avaue of S,. If S is close to the average
valueof S the Central Limit Theorem will frequently lead to
a sufficient approximation of the P value. For example,
2Nl gq Can be approximated by the X2 distribution near the
averageval ueof Nlgq. Thetechniquedescribed hereisappli-
cable both near and far from the average value of S. The goa
of thistechniqueisto convert the probability distributioninto
two components. One component can be determined exactly.
The other component contains a probability distribution
Py (S whose average value for Sequals .

Let M(8) be the moment-generating function for the prob-
ability distribution P(S). M(B), which is defined in most in-
troductory statistics books, is:

approximating

M(®) = Z P9 ©)
We define a new probability distribution Pg(S) as:
P9 = Sy @
The M(8) in the denominator ensures that:
DP9 =1
ars

By the definitionsin equations (3) and (4), the average of S
for Pg, Ha, isafunction of the moment-generating function
and itsfirst derivative:

o = > P = M'(8)/M(6) 5)

The variance of Sfor P, o3, is a function of the moment-
generating function, its second derivative, and pg:

02 = D (SHp)?Py(S = M'(0)/M(6)-u2 (6)

als

When 8 equals zero, formulas (5) and (6) give the average
and variance of Sfor the original distribution P(S).
Equation (4) can berearranged so that P(S) isafunction of

Po(S):

P9 = {w]e*Me),Pe(S) )

ey
Our goal in this technique isto work with a probability dis-
tribution Py (S whose average value for Sis &,. Py (S) isob-
tained from equation (4) by setting 6 to avauey such that pig
equals S,. From equation (5), y is determined from the fol-
lowing formula:

S = M'(¥)/M(y)

Wenumerically solvefor y using an a gorithm that combines
the Newton—Raphson method with bisection (Press et al.,
1988, pp. 273-274). We caculate o2 as aby-product of this
algorithm because it requires the derivative of pg with re-
spect to 6, which happens to equal o2. In practice, this nu-
merical solution requires only afew iterations.

By substituting y into equation (7), we obtain:

P = [%]e-ﬂwpm

and, thus, the P value of &, equals:

PS=S) = [“Qfs?] > erewp (g 8

S=S

If M(B) and itsfirst two derivatives can be determined effi-
ciently enough, y, o7 and the bracketed component of equa-
tion (8) can be determined numericaly.

If the overal datistic Sis the sum of many independent
statistics, the Central Limit Theorem justifies estimating
Py (S with anormal distribution. Under these conditions, the
summation in equation (8) can be approximated by an inte-
gral. Thus, assuming &, isgreater than or equal totheaverage
Ssothaty=0:

z eVSP (9
S=S

~ | evs0_1_gs%ed gg )
f S o

= eop2 | L @y
Van
Yoy

®©

0v)2
- eer? J Ly ey (10)
(yoy)?/2
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vay)2 -
~ e(/; /ZJ i()g)e—ydy
Gop2 EA

1

=

y heeds to be non-negative in the above formulas so that the
first exponential term in formula (9) does not increaseto in-
finity and magnify the error in using anormal distribution to
approximate Py (9. If & is less than the average of S the
large-deviation technique can be used to estimate P(S< S).
However, when S islessthan the average, it is sufficient for
our purposes to approximate the distribution P(S) with a
gammadistribution for thevariabley = S— Syin, fitted to the
numerically determined average and standard deviation.

Theintegral in formula (10) corresponds to agammadis-
tribution, which can be efficiently determined numerically
(Press et al., 1988, pp. 171-174). Formula (10) can be ap-
proximated analyticaly by formula (11) when & is not too
close to the average or maximum vaue of S i.e. when
yoy >> 1. However, we have chosen to use formula (10)
rather than formula(11) inour currentimplementation of this
method for approximating P vaue.

A final set of approximationsare useful for scores near the
minimal score, Sy, but greater than the average, and for
scores near themaximal score, Syax. Thenormal approxima:
tion of Py (S) becomesincreasingly inaccurate as the differ-
ence between S, and either Syin Or Syax becomessmall rela-
tiveto o . For example, when &, approaches Syax, Yoy ap-
proaches zero and formula (10) equals 0.5 rather than 1,
which would be the correct result. To improve our estimate
for Py (S when & — Syin < 30y, we approximate Py (S) with
agammadistributionfor thevariabley = S— Syin, rather than
withanormal distribution. Toimproveour estimatefor Py (S
when Snax — S < 30y, we approximate Py (S) with agamma
distribution for the variabley = Spax — S

(11)

Applying the large-deviation technique to multiple
sequence alignments

To apply the techniques described above, we need to be able
to cal cul ate efficiently the moment-generating function M(6)
and itsfirst two derivatives M'(8) and M" (B) for the statistic
of interest. In this subsection, we describe these calculations
for the statistic Nlg, Where N is the total number of se-
quences in the dignment and |« is the information content
statistic defined in formula (2). While analytical approxima:
tionswould be desirable, anumerical calculationispractica
and iswhat we describe here.

Since we restrict ourselves to smple alignment modelsin
which each column is independent, the moment-generating
function only needsto be cal culated for asinglecolumn since

the overall moment-generating function is only dependent
on M, the moment-generating function for an individual
column, and L, the width of the alignment:

M(8) = Mc(8)-

Furthermore, snce each column is independent, the daidtic
Nl s isthe sum of an independent component for each column.
Thus, as L becomes large, Pg(Nls) approaches anormd dis-
tribution for values of Nl s closeto pg. However, in our experi-
ence, the norma approximation works well for Pg(Nl ) even
when the width L equas 1 (see Figure 3c and €).

By the definition in equation (3), the moment-generating
function for Nl for anindividual columniis:

MO = D, eXp(e 2. nil”nir#) H.Alfl!ni! [Ief (12

=N =1

where ny is the occurrence of |etter i. The outer summation
is taken over dl combinations of the iy summing to N. The
total number of such combinationsis(N+ A—1)!/N!/(A-1)!,
i.e. O(NA-1), A brute force calculation for M(8) involving
all these combinations is not too bad for a DNA alignment
where A= 4, but isunacceptablefor proteinswherethereare
20 letters in the amino acid alphabet. Therefore, we use the
following dynamic programming agorithm, whose com-
plexity isonly O[(A —2)N? in time and O(N) in space.

To simplify our description of this algorithm, we define a
function M; (6, n) as the component of the moment-generat-
ing function that is dependent on letter i, given 8 and the oc-
currence n of letter i:

_ n/N) P
M;i(8,n) = exp(enlnT)m

Thus, the definition of Mg(8) in equation (12) can be re-
written as:

A

M(0) = > NI T[Mm(0,n)

Zn;=N i=1

Inthisagorithm, the contribution of each | etter isincorpo-
rated into the calculation for M¢(8) one at atime. The algo-
rithm creates amatrix b (i,n) which contains the intermedi-
ate caculations of M¢(6) through letter i and containing n
sequences. Within A(i,n), i varies from 1 through A and n
varies from O through N. Mc(6) will equa AL(AN). For
0<n <N, M(1,n) isinitialized by the rule:

AMo(1,n) = NI M1(6,n)
For1<i<Aand0<n<N, Ab(i,n) isdetermined by therule:

Mo(i,n) =

]

Ao(i-1,J)M;(8, ) (13)
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Finaly,

N
Mi(6) = Mo(AN) = > Mo(A-L j)Ma(6, N)
i=0
To cdculate My(0), the dgorithm crestes a matrix b'(i,n)

which contains the intermediate caculations of M(6) through
|etter i and containing n sequences. M¢(0) is determined anal og-
oudy to Mc(B) such tha M(6) will equd A'(AN). For
0<n<N, M'(L,n) isinitidized by the rule
aM,(6, n)

a0
Forl<i<AandO0<n<N, A (i,n) isdetermined by therule:

M(i,n) =

M'(1,n) = NI

n

Z[MH,J‘) M©O.1H) + oAb (-1.) M] (14

j=0 a0
Finally,
M(8) = (A, N)
\ ' i : _ IMA(0,NH)
= JZO[J“? (A-1,])MA(B, N+) + %(A—1,J)AT]

Tocdculate M. (B), theagorithm createsamatrix Ab" (i,n)
which contains the intermediate caculations of M; (0)
through letter i and containing n sequences. M. (0) is deter-
mined anaogously to Mc(6) such that M. (6) will equa
SM"(AN). For 0<sn< N, M"(1,n) isinitidlized by therule:

. 92M4(6, n)

— I—
M(1,n) = N! 262
Forl<i<AandO<n< N, M"(i,n) isdetermined by the
rule:

n

g , aM;(6,
rlim) = Z[Jl(b (LM, ) + 24 (-1, )) I(aon_n
j=0

020, nH)
+ Mo(-1)—3 ] (15)
Finaly,

Me (@) = M (A N)

N
= [Jﬂ;”(A—l,j)MA(H, NH) + 246" (A-1,j)

j=0

M6, NH)
0

92M (6, N—j)]
+ M(AL ) —

202

Since Mc(0), My(0) and M. (0) can be efficiently deter-
mined for Nlgyg, we can numericaly determine y, M(y),
M'(y), M"(y) and oy. These values can then be used to ap-
proximate Py (Nlsy) With either a normal or a gamma dis-

tribution, which can be substituted into equation (8) to esti-
mate the P vaue for a specified vaue of Nl gy

A specia case, considered by some of our algorithms, is
nucleic acid alignments in which a pattern is assumed to be
symmetrical. In this case, when aword is incorporated into
an alignment, its reverse complement is also added. If one
knowstheleft half of such analignment matrix, then onealso
knowstheright half. If thewidth L of the alignment iseven,
the moment-generating function is:

M(8) = Mc(20)L/2

where M¢() is defined in equation (12). If L is odd, the mo-
ment-generating function is:

M(6) = Mc(26)(E~ D/2M center(26)

where Meenter(26) isthe moment-generating function for the
central position of the alignment. Meenter() differsfrom Mg()
intwo ways. First, Mcenter() substitutes N/2 for N since only
N/2 of thelettersin the central position areindependent. Sec-
ond, Mcenter() Uses an a phabet consisting of only A/2 letters
since each letter of the original aphabet isindistinguishable
fromitscomplement. Thea priori probability of oneof these
new letters is the sum of the a priori probabilities of the
corresponding complementary letters, which should each
have the same a priori probability.

Approximating the P value numerically

In this section, we describe an aternative method for ap-
proximating the P values of Nlgq. This method creates a
tableof P valuesfor the statistic after it has been transformed
into integer values. The statistic Nl istransformed into an
integer value I" after multiplying Nlgq by some factor a:

I" = int(aNlseq) (16)

inwhichthe‘int’ function roundsareal number toitsclosest
integer. a ischosen sothat the maximum (1 ,,,) and minimum
(1in) valuesof I' differ by some desired amount. The greater
the difference between 1, and | ;,, the more accurate the
estimation of the P value.

In principle, a probability-generating function, G(X), can be
created for an dignment having a width of L:

Imax
G = > P
I"=Imin
in which P_(1") is the probability of observing the specified
value of I', i.e. the probability of observing (I' — 0.5)/a <
Nlgeq < (I + 0.5)/a. Thus, the P value for I, would equal:

)
Imax

> Pl

"
I"=lo
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Staden (1989) described an efficient method for numeri-
caly estimating the probability-generating function for
weight-matrix scores. If the probability-generating function
for the information content of an individual column of an
alignment matrix isknown, Staden’s approach can be direct-
ly used to approximate the probability-generating function
for amulti-column alignment matrix. Let P(1") be the prob-
ability of observing I', given asingle alignment position, i.e.
P(1") = Py(I"). Let | ,and 1, be the minimum and maximum
values of I', respectively, for a single alignment position.
P_(l") can be approximated from P _ 1() and P() using the
following relationship:

PL(I) = > PHPL(H)

j=Im

The summation only needs to be taken for values of j for
whichP(j)#0.LetB= 1y, — I, + 1, and let L bethewidth
of the alignment. For aweight matrix, the distribution anal-
ogousto P(I") only has A non-zero values. However, for an
alignment matrix, P(I") may have up to B values. Thus, inthe
worst case, thetime complexity of thisalgorithmis O(L2B?).

The probability-generating function for an individual col-
umn of aweight matrix requires the determination of only A
weights and probabilities; thus, its calculationistrivial to do
directly. On the other hand, a brute-force caculation of the
probabilitiesfor theinformation content of anindividual col-
umn of an alignment matrix is much more complex. This
calculation requires a determination for all

(N+ A — 1)
NI(A — 1)!

combinations of N letters taken from an alphabet containing
A letters. This brute force calculation can be practical for
nucleic acids where A = 4. When Alis larger, such as 20 for
an amino acid a phabet, the probability-generating function
can be approximated using an algorithm similar to that for
determining the moment-generating functionin the previous
section. However, the complexity of the algorithm here is
O[(A—2)BN 2] in time and O(BN) in space, which are more
complex by afactor of B.

In this agorithm, the probability-generating function is
constructed oneletter at atime. Thea gorithm createsathree-
dimensional matrix, %(i, n, 1), which containstheintermedi-
ate approximation of P(I") through letter i, containing n se-
quences, and having an intermediate value of I'. Within
P(,n, 1), i varies from 1 through A and n varies from 0
through N. Therangeof I' isdependent on thevauesof i and
n. P(1") will be approximately equal to P(A, N, I').

Tosimplify our description of theal gorithm, we definetwo
functions. 1;(n) is the integer approximation of the compo-
nent of " dependent on letter i:

li(n) = int (an 1nnF/,—iN)

P (n) is the component of the multinomial probability [for-
mula (1)] that is dependent on letter i:

P

Pi(n) = nr

ForO<n<N, P(@,n, I") isinitialized by therule:
P(L,n, 13(n)) = N! Py(n)

Forl<i<AandO<n< N, P(i,n I') is determined by the
rule:

P@i,n ") = Z Pi(K) P(i-1, nk, I'1{(K)) 17)
k=0
inwhich the upper and lower limits of kwill frequently need
to belowered and raised, respectively, sothat 1'—l;(k) iswith-
in arange consistent with i —1 and n—k. Finally,

P(I") = P(AN,1)
= z Pa(k) P(A-1, Nk, 1"l 5(K))

k=0

The overdl time complexity of this method for numericaly
determining probability-generating functions is O[(A — 2)BN 2
+ 12B?. Reativeto the large-deviation method described in the
previous section, this method has the disadvantage thet its com-
plexity is dependent on the vaue of B and the width L of the
dignment. It hasthe advantage over the previous method in that
its accuracy can be increased by increasing the vdue of B. Fur-
thermore, it generates a table for the full range of information
contents rather than just for an individua information content.
The speed of this method can be increased by creating a table
of probabilities only for scores greater than a pecified vaue.
The greater this minimum score, the grester the speed for the
same level of accuracy.

For our alignment agorithms, the large-deviation tech-
nique described in the previous section is practical under a
wider range of conditions. Table 1 demonstrates the differ-
ence in speed between the two agorithms under various
conditions. We have recently realized that the Fast Fourier
Transform algorithm and the Convolution Theorem (Presset
al., 1988, Chapter 12) can be applied to formulas (13), (14),
(15) and (17) to greatly reduce the time complexity for our
algorithmsto calculate P vaues. Thus, the calculation of the
moment-generating function in the large-deviation tech-
nique can be done in time O[(A — 2)N log, N] rather than
O[(A — 2)N?], and the numerical calculation of P value can
be doneintime O[(A—2)BN log, (BN) + LB logy(LB)] rather
than O[(A—2)BN 2+ L2B?]. Wehavenot yet incorporated the
Fast Fourier Transform into our programs.
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Table 1. The time required to determine the P value for DNA seguence
alignments containing various numbers of sequences and having various
widths. Shown are the time to determine a table of P values numerically
(NUM) and the time to determine an individual P value using the
large-deviation (LD) method. Equiprobable DNA alphabets were used in
all examples. NI goq was multiplied by 10 before converting to an integer
for determining P values numerically [formula (16)]. LD times are the
average of 10 determinations each at a different value of Nlgeq. Programs
were run on a SUN Ultra 30 workstation with a 296 MHz processor

Number of ~ Width Time Time

sequences NUM LD NUM/LD
10 1 0.01s 0.005s 2

10 10 01s 0.005 s 20

10 100 12s 0.005 s 2400

100 1 0.2s 0.3s 0.6

100 10 51s 0.3s 170

100 100 16h 0.3s 19 000
1000 1 3min 32s 6

1000 10 2h 332s 230

Counting the number of possible alignments

The P value of an individua alignment is not usually suffi-
cient to describethe statistical significance of that alignment.
We are generdly interested in the overal best aignment
given atypicaly huge number of possible alignments that
can be constructed from aset of sequence data. For example,
anaignment of width L, having acontribution of exactly one
word from each of N sequences of length Q, can be chosen
in (Q — L + )N ways. More generaly, an dignment may
contain at most oneword from each of N sequences. Let nbe
the number of wordsin the alignment, let Q' = (Q—-L + 1)
be the number of possible starting positions in each se-
quence, and let A(n) be the number of possible alignments.
Giventhat n< N, an alignment can bechoseninthefollowing
number of ways:
AM = 5N @) (18)

Another generalization allows each sequenceto contribute
oneor morewordsto the alignment. We deriveaformulafor
A(n), inwhichn= N, with theaid of agenerating function—
a polynomial in which the coefficient of x"is.A(n). In the
following derivation, we have permitted aignments to con-
tain overlapping words so that the aignment width L only
entersthe resultsthrough Q'. Thisassumption simplifiesthe
problem, but gives an overestimate of _A(n) if overlaps are
not permitted.

The coefficients of the following polynomial are the
number of ways n words can be chosen from a single se-
quencefor 1< n<Q':

: 2 Q!
(X + 1)Q—1 = zmxn

Therefore, the coefficients of the following polynomia are
the number of ways n words can be chosen from a set of N

sequences when each sequence must contribute at least one
word to the total of n words:

NQ'
ZA(n)x”
= [(x +1)Q — 1}N

Z( ¥+ D

— N— (IQ )' n
-3 Z( £ i o

n= N|>

Thus, given that n = N, an aignment can be chosen in the
following number of ways.

N _ o
A = _Z<—1“*>{u(m)!][mggzn)!] (19)
Iza

In formula (19), the dummy variable i is initialized to the
smallest integer = n/Q'.

Formulas (18) and (19) give the same result when n = N.
If thelengths of each of the N sequencesare not identical, we
approximate (Q — L + 1) by its geometric mean so that for-
mulas (18) and (19) are exact only when each sequence con-
tributes exactly one word to the alignment (i.e. n = N).

An even less redtrictive alignment constraint allows each
of the N sequences to contribute zero or more words to the
alignment. If the ith sequence has alength of @, then there
areatotal of Ny = =N (Q; -L + 1) possible starting posi-
tionsfor each of then words intheaignment. Therefore, the
alignment can be chosenin

3 N!
Al = TN = (20)
waysif the words contained in the alignment are allowed to

overlap.

If each adignment was independent of each other aign-
ment, the number of possible alignments (A) could be com-
bined with the P value (Pmg) for an individual aignment
matrix to determine an overall P value (Poveral):

Poveral = 1—(1— I:)mat)A (21)
= 1—exp(=A Pma) (22)
= A Pma (23

The approximation in formula (22) assumes that Py << 1
and correspondsto an extremeval uedistribution. If thelower
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limit of integrationinformula(9) issettoavaue S, + € close
to &, the approximation for P value corresponding to for-
mula (11) generalizesto:

PS=S +¢) = [M]L

&% |10, 2n

When this approximation for P value is substituted into for-
mula(22), weobtainthe P valuefor thetypeof extremevaue
distribution that Claverie (1994) observed for the scores of
weight matrices. However, this approximation and the pre-
cise extremeval uedistribution should only be accurate with-
in alocalized region around the score S,.

The approximation in formula (23) further assumes that
APma << 1. Although AP is only approximately equal
to the overall P value, it is exactly equa to the expected
number of alignments having an information content greater
than or equal to the observed value of | &, evenif the align-
mentsare not independent. However, alack of independence
will increase the standard deviation of this expectation. We
call this expectation the expected frequency of the informa-
tion content, given the width and the number of sequencesin
the alignment.

Sinceaignmentsaregenerally notindependent, we usethe
expected frequency [formula (23)] to compare alignments
rather than the overal P value [formula (21) or (22)]. The
expectation will belarger than the overall P value and, there-
fore, is a more conservative measure of statistical signifi-
cance than is the overall P vaue. Both the expectation and
the overall P value allow the comparison of alignments hav-
ing differing widths and containing differing numbers of se-
quences. Multiplying the expectation or overall P value by
the number of different widths and the maximum number of
sequence words being considered would conservatively ac-
count for these two additional degrees of freedom.

In principle, the P value of anindividual alignment and the
overal P vaue can be determined by repeatedly aligning
randomized sequences. However, in general, such pro-
cedures cannot be repeated enough to observethe very small
P values and expectations seen in practice (e.g. Table 2). In
the case of the overall P value, the randomi zed-sequence ap-
proach is further limited because practical alignment algo-
rithms are not guaranteed to find the highest scoring aign-
ment, unless the amount of sequence dataisrelatively small.
With randomly generated sequences, multiple alignment al-
gorithmswill probably fail to find the highest scoring aign-
ment because too many alignmentswill have scores closeto
this mathematically optimum alignment. Thus, repeatedly
aligning randomized sequencesis not expected to work well
to determine accurate overal P vaues, although this pro-
cedure can il give insight into whether a particular value
of lsq is expected by chance.

Algorithmsfor determining the alignment having the
optimum information content

Our ultimate goal is to apply our models and statistics for
sequence alignments to identify optimal alignments and de-
termine consensus patterns describing functiona relation-
ships. Our models and statistics are applicable to various a -
gorithmsfor determining multiple-sequence alignments, e.g.
expectation maximization (Lawrence and Reilly, 1990),
Gibbssampling (Lawrenceet al., 1993) and our greedy algo-
rithm (Stormo and Hartzell, 1989; Hertz et al., 1990). The
goa of al theseagorithmsisto determine asequencedign-
ment that maximizesalog-likelihood statistic. Inthissection,
we describe the current version of our greedy algorithm.

Table 2. The most statistically significant alignments found by the
CONSENSUS program when aligning CRP-binding sequences using a
priori probabilities of 30% for A and T, and 20% for G and C

Width Number of P value Expected
sequences frequency
16 17 8x 100 8x 10710
17 4 5x 1013 1x 101
18 17 3x 1048 2x108
19 6 1x10-18 3x102
20 19 2x10%4 5x 1011
21 6 5x 10719 8x 1073
22 22 3x 10760 2x 101
23 9 2% 10726 2x10-3
24 21 4x 1057 2x 10710
25 9 7x10°28 6x10°
26 21 2x 10756 9x 10710
27 6 2x10718 2x1072
28 21 1x10755 3x10°
29 12 7x 10732 7x1073
30 21 6x 10755 8x 107

We previously described an agorithm which sought an
alignment that maximized the information content [formula
(2)], but was dependent on the order with which the se-
guences were presented to the program (Stormo and Hart-
zell, 1989; Hertz et al., 1990). Here, we describe two rel ated
alignment algorithms that are order independent. The first
algorithm, like our previously published algorithm, requires
the user to specify thewidth of the pattern being sought based
on previous biochemica knowledge. The second agorithm
determines the width of the alignment, but requires that the
user adjust abiasthat issubtracted from theinformation con-
tent so that the average score is negative. To use these algo-
rithms effectively, the width of the pattern needsto be varied
either directly, asinthefirst algorithm, or indirectly by vary-
ing the bias, as in the second algorithm. The expected fre-
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quency statistic described in the previous section can then be
used to compare aignments having differing widths and
containing differing numbers of sequences.

As with all common multiple alignment algorithms, our
approach isacompromise between the need to keep the algo-
rithm computationally practical and the desire to obtain the
mathematically optimum alignment. Thus, our agorithms
are not guaranteed to give the mathematically optimum
alignment for alignments containing many sequences.

The user specifies the width of the alignment

We first describe our agorithm in which the user sets the
width directly. This agorithm isimplemented in a program
caled CONSENSUS. The user first designates the maxi-
mum number of aignments that can be saved (e.g. 100 or
1000). Typically, less aignments are ultimately saved be-
cause some will be identical. Besides the width, there are
various congtraints the user can impose. Thefollowing three
alternatives correspond to the constraints, described in the
previous section, that control the number of times each se-
guence can contribute to an aignment:
1.  Each sequence can contribute at most one word to the
alignment [corresponds to formula (18)].

2. After each sequencehascontributed exactly oncetothe
alignment, sequences can contribute additional words
to the alignment [corresponds to formula (19)].

3. Each sequences can contribute zero or more words to
the alignment [corresponds to formula (20)].

For aternatives (2) and (3), the user aso needsto decide by

how much wordsfrom the same sequence should be allowed

to overlap.

When aligning nucleotide sequences, the user aso needs
to decide whether to include the complementary sequence.
If the complementary sequenceisincluded, the user needsto
decide whether complementary wordswill be alowed inthe
same alignment. If complementary words are allowed in the
same aignment, the user needs to decide whether to require
the pattern to be symmetrical, thus requiring the inclusion of
complementary words in each alignment.

Figure 2 givesasimplified example of the aignment algo-
rithm when aigning exactly one word from each sequence.
Thefollowingisamore genera description of how thealign-
ment algorithm proceeds.

CYCLE1 Createaone-sequenceaignment matrix for each
sequence word. If the user has sufficient prior
information, the initial set of one-sequence
alignment matrices can be created from a subset
of thetotal sequencedata. Such user intervention
can be essentidl if thereis alarge amount of se-
quence data.

CYCLE 2 Subject totheconstraintsdetermined by the user,
determineall possiblepairwiseaignmentsof the

one-sequence aignment matrices and the re-
mai ning sequencewordsto create alignment ma-
trices representing two-sequence aignments.
Score the new alignment matrices according to
their information content. The highest scoring
two-segquence alignment matrices, derived from
each one-sequence alignment matrix, are saved
up to the user-specified number of alignments.

CYCLE 3 Each alignment matrix saved from CYCLE 2is
paired with each word not already contained in
the alignment matrix, and the new three-se-
guence alignment matrices are scored according
to their information content. The highest scoring
three-sequence aignment matrices, derived
from each two-sequence alignment matrix, are
saved up to the user-specified number of aign-
ments.

CYCLE N Each dignment matrix saved from CYCLE (N—
1) ispaired with each word not already contained
inthe aignment matrix, and the new N-sequence
alignment matrices are scored according to their
information content. The highest scoring N-se-
guence alignment matrices, derived from each
(N —1)-sequence alignment matrix, are saved up
to the user-specified number of alignments.

The algorithm continues until each sequence has contrib-
uted exactly onceto each saved alignment or until someuser-
determined number of words contributes to each alignment.
The user can also direct the algorithm to quit when it appears
tohaveaready identified theaignment having the minimum
expected frequency. This is decided if a user-specified
number of cyclespassesafter creating theaignment that cur-
rently has the minimum expected frequency. The program
can print the highest scoring aignment matrix from each
cycle; thus, a collection of dignments having differing
numbers of words can be printed. These alignment matrices
are ordered according to their expected frequency. The pro-
gram can a so print thealignment matrices saved after thelast
cycle.

Whenever two alignments are identical, only one of the
two alignments is saved. Each saved alignment is summar-
ized in a matrix whose elements are the number of occur-
rences of letters. Therefore, each pairwise aignment in-
volvesthe aigning of asequence against amatrix and, thus,
issimilar in concept to aligning a protein sequence against
the profile of a protein family (Gribskov et al., 1990).

The user specifies a standard deviation bias

Wehavealso developed asimilar algorithminwhich theuser
does not explicitly specify the width of the alignment. This
algorithm isimplemented in a program called WCONSEN-
SUS. A property of theinformation contentisthat itisalways
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sequence 1 sequence 2 sequence 3
ACTGA TAGCG CTTGC
CYCLE 1 ACTG
All1 0 0 0
Cclo 1 00
GJO 0 0 1
Tjo 0 1 0
Ieq =55
CYCLE 2 ACTG ACTG ACTG
TAGZC CTTG TTGC
Al|l 1 00 A All1 000 All1 00O
C|0 101 C Cl{1 100 Ci{0 101
G|0O 011 G G|0 0 0 2 Gj0 0 11
T|1 0 1 0 T T|0 1 2 0 T|]1 1 1 0
Iseq = 2.8 Tseq = 4.2 Iieq = 2.8
CYCLE 3 A ACTG
A AGCG
C TTGZC
A2 Al2 00O
Cl1 CcCj|0 111
GJoO G011 2
TJjO T|1 1 10
I Lieq = 2.1

Fig. 2. An example of the algorithm for finding sequence alignments of afixed width, assuming each sequence contributes exactly once to the
fina aignment. Alignments of width 4 are being sought from the three single-stranded DNA sequences listed at the top. Each base hasan a
priori probability of 25%. Cycle 1: For simplicity, only the alignment matrix originating from the first 4-mer of the first sequence is shown.
In the actual program, one alignment matrix would be created for each of the six 4-mersthat exist in the three sequences of length five. Cycle
2: The four matrices that can be created by adding an additional sequence to the matrix shown in cycle 1. We designated that a maximum of
six alignments be saved after the first cycle; therefore, only one descendant of the parental matrix shown in cycle 1 can be saved. The saved
matrix is surrounded by the heavy line. If al six matrices created in cycle 1 were followed, four matrix alignments would be saved after cycle
2 because two redundant matrices will be eliminated. Cycle 3: The two matrices that can be created by adding a third sequence to the saved
matrix shown in cycle 2. The saved matrix is surrounded by the heavy line. If all the matrices created in cycle 1 were followed, five matrix
alignmentswould be saved after cycle 3 because one redundant matrix will be eliminated. Thus, the alignment shown is not the highest scoring.

non-negative. However, for thislocal alignment algorithmto  interesting alignment can appear as a region of positive in-
work, we need the score to be negative on averagesothatan  formation. Thisissimilar to the constraint on the scores used
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(a) Equiprobable DNA Alphabet (b) Skewed DNA Alphabet
sequences: 2 width: 10 sequences: 2 width: 10
4 4
2 2

LD 1 . LD 1 0 % a0 S o0 00
NUM . NUM ’ IIWWﬁHEE Vs v

0.50 . 0.50 .
9 [ ] ° L ]
026F——T——7—— 0B ——r—T—7 T T 7T
0 2 4 6 0 2 4 6 8 10 12 14 16 18 20
— log, o (p-value) — log,,(p-value)
(C) Equiprobable DNA Alphabet (d) Equiprobable DNA Alphabet
sequences: 10 width: 1 sequences: 10 width: 10
4 4
2 9 .
e & ° S
2% o°
LD B N PR LD 1?‘%‘1&“"‘“‘- s . *
NUM ”° . NUM ¥ii.
: 0.50 . 0.50 A"
®
0.25 0.25 .
().125 T | T [ T 0125 T ‘ T | T | T { T ] T ] T ‘ T T T l
0 2 4 36 38 40 42 44 46 48 50 52 54
— log, o(p-value) —log, o (p-value)
(e) Equiprobable DNA Alphabet (f) Equiprobable DNA Alphabet
sequences: 100 width: 1 sequences: 100 width: 10
4 4
. ®
2 s T 2 O
1%3—»—« 1 e
LD . Chdovd T LD e $0q% o
. e R, o [—— oe® oo
NUM ° NUM ®
0.50 v 0.50 oy
° [ ]
0.25 0.25 -
o
[ ]
0.125 Tl|lllll([llll]llll'llll[l]T]‘l 0.125 lI']IIl]llllllI‘lll["ll
0 10 20 30 40 50 60 550 560 570 580 590
— logy ¢ (p-value) —log, o (p-value)

Fig. 3. Theratio of the P value calculated by the large-deviation (L D) method to the P value determined numerically (NUM) for various values
of Nlgeq. The horizontal axisisthe numerically determined P value, which is assumed to be accurate. Thevertical axisistheratio. For smplicity,
(d) and (f) excludetheleft-hand portion of the graph wheretheratio isawaysbetween 0.9 and 1.1. Theletters of the equiprobable DNA alphabet
each have an a priori probability of 0.25. The letters of the skewed DNA alphabet have a priori probabilities of 0.1, 0.2, 0.3 and 0.4.

inthealgorithm of Smithand Waterman (1981). Weforcethe ~ ment. Higher biases decrease thewidth of the highest scoring
scores to be negative on average by subtracting a positive  alignment.
biasfromtheinformation scorefor each column of thealign-
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We subtract two biases from the information content for
each position of an aignment. The first bias is the average
information content expected from a collection of N letters
occurring with the designated a priori probabilities, where N
isthe number of sequencesin the alignment. Thiscorrection
causes the score expected of an arbitrary alignment to equal
zero. The score determined by subtracting thisfirst bias ap-
proximatestheinformati on content of the corresponding pat-
tern asthe number of sequencesin the alignment goestoin-
finity (Schneider et al., 1986). Therefore, we call this score
the adjusted information content.

The second bias subtracted from each position is some
multiple of the standard deviation of theinformation content
expected from a collection of N letters occurring with the
designated a priori probabilities. Subtraction of this second
bias, inadditiontothefirst, iswhat causestheexpected align-
ment score to be less than zero. During the alignment algo-
rithm, we call the score determined by subtracting these two
biases from the information content the crude information
content.

The number of standard deviations to subtract is not ex-
pected to be the same for al alignments. We try arange of
values, such as 0.5, 1, 1.5 and 2, and then compare the vari-
ous alignments identified according to their expected fre-
quency or according to empirical constraints. Our standard-
deviation bias, which isasimple multiple of the alignment’s
width, should not be confused with the standard deviation of
the information content, which is a multiple of the square
root of the aignment’s width.

The agorithm, in which the user specifies a standard-
deviation bias, is very similar to the agorithm in which the
alignment width is explicitly set. However, it differsin the
following two ways.

1. The agorithm seeks to maximize the crude informa-
tion content rather than the true information content.

2. The saved alignment matrices include the alignment
information from the sequence endsnot included inthe
local region of high crude information content. There-
fore, these end regions can become incorporated into
theloca aignment as additional sequences are added.
Thus, a single alignment matrix can contain informa-
tion on multiple motifsthat are spaced the samein each
of the aligned sequences. However, each alignment
printed out by the program only contains asingle peak
of high crude information content.

Results

The accuracy of the P value approximations

Thelarge-deviation method for determining the P valuewas
compared to the numerical method. We used four different
distributions of |etters: an equiprobablefour-letter DNA-like

alphabet in which each letter had an a priori probability of
0.25; a highly skewed four-letter DNA-like alphabet in
which letters had a priori probabilities of 1/10, 2/10, 3/10,
4/10; an equiprobable 20-letter protein-like aphabet in
which each letter had an a priori probability of 0.05; and a
highly skewed 20-letter protein-likea phabet inwhich letters
had a priori probabilities of 1/210, 2/210, ..., 20/210.

Since the results for the DNA-like and protein-like al-
phabets are similar, we only show results for the DNA-like
alphabet (Figure 3). For amost all examples, we multiplied
Nl sq by 1000 before converting the statistic to an integer for
the numerical method; thus, we consider the P values calcu-
lated by the numerical method to be very accurate. The ex-
ception wasfor thealignments containing 100 sequencesand
having a width of 10, in which we only multiply by 100 to
reduce the complexity of the calculation (e.g. Figure 3f).

As expected, because the estimate of Py () is based on the
Centra Limit Theorem, the accuracy of the large-deviation
method increases as the width of the aignment increases.
However, the method is fairly accurate even with an align-
ment width of one (Figure 3c and €). As the number of se-
guences and the width increase, errors >10% only appear at
thevery largest information contentswherethe P valueisthe
smallest (Figure 3d and f). For alignments containing very
few sequences, the results are more accurate for the skewed
a priori distribution, presumably because of the greater
number of different values of Nlgq (Figure 3aversus 3b).

The decrease in accuracy as the information content ap-
proaches its maximum vaue is not surprising. The norma
approximation to Py () will become increasingly bad as the
distance between its average and the minimum or maximum
values of Nl becomes small relative to its standard devi-
ation. To reduce this problem, our algorithm uses a gamma
distribution to estimate Py () at the lower and higher values
of Nlgq where oy is greater than one-third the distance to
either the minimum or maximum value of Nlgq. While the
normal distribution ranges from minusinfinity to plusinfin-
ity, the gamma distribution has one finite end; thus, we sus-
pected it would be abetter estimate of Py () whenitsaverage
is close to afinite maximum or minimum.

The gamma distribution is somewhat superior to the nor-
mal distribution at the lower values of NI. Thisresult is ex-
pected since a type of gamma distribution (i.e. the x2 dis-
tribution) is predicted by the Central Limit Theorem. Un-
fortunately, the gamma distribution does not seem to
improve the estimate of Py () at the higher values of Nlgyq.
Perhaps the discrete nature of the true distribution becomes
increasingly important for Py () asits average approachesthe
maximum vaue of Nlggq. Thus, neither the continuous nor-
mal nor the continuous gamma distribution are able to cap-
ture the properties of the true, discrete distribution.
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Aligning DNA-binding sites of the E.coli CRP
protein

TheE.coli cyclic AMP receptor protein (CRP) isresponsible
for activating the transcription of many genesand repressing
the transcription of afew (Collado-Vides et al., 1991). CRP
worksby directly bindingtothe DNA inthe promoter region.
This protein also goes by the name catabolite gene-activator
protein (CAP).

A collection of 18 CRP-regulated genes, each 105 base
pairs (bp) long, was aigned with the current version of our
CONSENSUS program. Based on experimental evidence,
these 18 sequences contain 24 putative binding sites. Thisset
of sequences has proven useful for testing our origina
greedy aignment algorithm (Stormo and Hartzell, 1989) and
the original expectation-maximization alignment agorithm
(Lawrence and Reilly, 1990).

Since CRP binds as a dimer, the program was directed to
assume that the binding site was symmetrical. Thus, if ase-
guence word wasincorporated into an alignment, itsreverse
complement was also incorporated. Since some of the se-
guences had morethan one CRP binding site and some of the
experimentally determined sites may be incorrect, the pro-
gram was directed to alow each sequenceto contribute zero
or morewordsto the alignment. However, each word had to
be separated by at least 10 bp (i.e. one helical twist of the
DNA). The width of the aignment was varied from 16
through 30 bp. Alignments were alowed to have up to 40
complementary word pairs.

Although the frequency of each basein the E.coli genome
isessentially the same, promoter regions are AT rich. In our
analysis, wetried both genome-like a priori probabilities of
25% and the frequencies in the dataset being aligned, i.e.
30% for A and T, and 20% for G and C. When the genomic
frequency of 25% was used as the a priori probability for
each base, the optimum alignment contained 14 out of the 24
putative sites, but also included 16 other AT-rich sequences
in the alignment. When the observed frequencies were used
as the a priori probabilities, the optimum alignment con-
tained 19 out of the 24 putative binding sites. Thisalignment
also contained three sites not believed to be CRP binding
sites; however, each of thesethree sitesoverlapped aputative
Site.

The optimum alignment was 22 bp wide and had an ex-
pected frequency of 2 x 1011 (Table 2). Because the dlign-
ments were required to be symmetrical, the alignments with
odd widths are substantialy different from the aignments
with even widths. As a result, the alignments having odd
widths have substantialy higher expected frequencies than
those having even widths. The pattern identified issimilar to
the one we (Stormo and Hartzell, 1989) and others (Law-
rence and Reilly, 1990) have previoudy identified for the
CRP hinding site. The important difference is the statistics

that allow the user to judge whether a pattern is statistically
significant and to compare aternative adignments. By using
the expected frequency to compare alignments, the user can
impose less assumptions on the width of the pattern and on
the number of sites contained in the aignment.

Discussion

Information content and related statistics have proven their
usefulness for identifying and analyzing sequence aign-
ments (Schneider et al., 1986; Berg and von Hippel, 1987;
Stormo and Hartzell, 1989; Hertz et al., 1990; Lawrence and
Reilly, 1990; Lawrenceet al., 1993). However, amajor defi-
ciency has been the lack of an accurate measure of the P
value of a particular information content. In this paper, we
use large-deviation statistics and an efficient algorithm for
determining the moment-generating function to estimate the
P valueof aninformation content accurately. Thelarge-devi-
ation approach is also applicable to the scores of weight ma-
trices and, in this regard, can be used to generalize some of
the dtatistical results presented in Berg and von Hippel
(1987).

In the results presented here, we have assumed that the a
priori probability of each letter of asequenceisindependent
and identically distributed. Although this assumption is not
too bad an approximation for the E.coli genome, it isclearly
deficient for eukaryotic genomes. We are currently working
on extending our approach to eiminate this assumption. The
simple aignment matrix (Figure 1) explicitly assumes that
each position of an alignment pattern contributes indepen-
dently to the activity that has been selected for. In principle,
we can construct more complex alignment matrices that in-
corporate information on the correl ations between the posi-
tions of an alignment pattern (Hertz and Stormo, 1995).

Biologically related sequences can aso contain insertions
and deletions relative to each other. We have developed
alignment matrices and information content formulas that
account for gaps (i.e. deletions) in alignment matrices (Hertz
and Stormo, 1995). When the gaps at each position of an
alignment are assumed to be independent, our large-devi-
ation method can be directly applied to calculate statistical
significance. However, gaps are generally expected to be
correlated with any gaps in adjacent positions. We are cur-
rently extending our method to calculate the statistical sig-
nificance of alignment matrices containing information on
the correlations between adjacent gaps.

Our procedure for estimating the P valueis not limited to
theinformation content of sequencealignments. Itisdirectly
applicable to other hypothesis testing problems in which
variables are independent and sampled from a finite al-
phabet. The statistic can be anything in which the overall
statistic isthe sum of componentsthat are dependent on only
an individual letter (e.g. the x2 statistic).

576



Large-deviation statistics and multiple alignments

Acknowledgements

We wish to thank Christian Burks for suggesting that we
model alignments containing one or more words from each
sequence. We wish to thank Jean-Michel Claverie, Timothy
Bailey and Josh Stuart for helpful comments on this manu-
script. We especially wish to thank Josh Stuart for hiscareful
checking of theformulas. Thiswork wassupported by Public
Health Service grant HG-00249 from the National I nstitutes
of Hedlth.

References

Berg,0.G. and von Hippel,PH. (1987) Selection of DNA binding sites
by regulatory proteins: Statistical-mechanical theory and applica-
tion to operators and promoters. J. Mol. Bial., 193, 723-750.

Bucklew,J.A. (1990) Large Deviation Techniquesin Decision, Smula-
tion, and Estimation. John Wiley and Sons, New York.

Claverie JM. (1994) Some useful stetistical properties of position-
weight matrices. Comput. Chem., 18, 287-294.

Collado-Vides,J.,, Magasanik,B. and Gralla,J.D. (1991) Control site
location and transcriptional regulation in Escherichia coli. Micro-
biol. Rev,, 55, 371-394.

Dembo,A., Karlin,S. and Zeitouni,O. (1994) Limit distribution of
maximal non-aligned two-sequence segmental score. Ann. Prob.,
22, 2022-2039.

FieldsD.S.,, He)Y., Al-Uzri,A.Y. and Stormo,G.D. (1997) Quantitative
specificity of the Mnt repressor. J. Mol. Bial., 271, 178-194.

Gribskov,M., Lithy,R. and Eisenberg,D. (1990) Profile anaysis.
Methods Enzymoal., 183, 146-159.

Hertz,G.Z. and Stormo,G.D. (1995) Identification of consensus
patternsin unaligned DNA and protein sequences: A large-deviation
statistical basis for penalizing gaps. In Lim,H.A. and Cantor,C.R.
(eds), Proceedings of the Third International Conference on
Bioi nfor matics and Genome Research.. World Scientific Publishing,
Singapore, pp. 201-216.

Hertz,G.Z., Hartzell, G.W. 111 and Stormo,G.D. (1990) | dentification of
consensus patterns in unaligned DNA sequences known to be
functionally related. Comput. Appl. Biosci., 6, 81-92.

Karlin,S. and Altschul ,S.F. (1990) Methodsfor assessing the statistical
significance of molecular sequence features by using genera
scoring schemes. Proc. Natl Acad. Sci. USA, 87, 2264-2268.

Kullback,S. and Leibler,R.A. (1951) On information and sufficiency.
Ann. Math. Sat., 22, 79-86.

Lawrence,C.E. and Reilly,A.A. (1990) An expectation maximization
(EM) agorithm for the identification and characterization of
common sites in unaligned biopolymer sequences. Proteins, 7,
41-51.

Lawrence,C.E., Altschul,SF, Boguski,M.S,, Liu,J.S., NeuwadA.F.
and Wootton,J.C. (1993) Detecting subtle sequencesignals: A Gibbs
sampling strategy for multiple alignment. Science, 262, 208-214.

Press,W.H., Flannery,B.P, Teukolsky,S.A. and Vetterling,W.T. (1988)
Numerical Recipesin C. Cambridge University Press, Cambridge.

Schneider, T.D., Stormo,G.D., Gold,L. and Ehrenfeucht,A. (1986)
Information content of binding sites on nucleotide sequences. J.
Mol. Biol., 188, 415-431.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mal. Bial., 147, 195-197.

Staden,R. (1984) Computer methods to locate signals in nucleic acid
sequences. Nucleic Acids Res., 12, 505-519.

Staden,R. (1989) Methods for calculating the probabilities of finding
patterns in sequences. Comput. Appl. Biosci., 5, 89-96.

Stormo,G.D. (1988) Computer methods for anayzing sequence
recognition of nucleic acids. Annu. Rev. Biophys. Biophys. Chem,,
17, 241-263.

Stormo,G.D. and Fields,D.S. (1998) Specificity, free energy and
information content in protein—-DNA interactions. Trends Biochem.
i, 23, 109-113.

Stormo,G.D. and Hartzell ,G.W. |11 (1989) Identifying protein-binding
sitesfrom unaligned DNA fragments. Proc. Natl Acad. Sci. USA, 86,
1183-1187.

Stormo,G.D. and Yoshioka,M. (1991) Specificity of the Mnt protein
determined by binding to randomized operators. Proc. Natl Acad.
Sci. USA, 88, 5699-5703.

Stormo,G.D., Schneider,T.D. and Gold.L. (1986) Quantitativeanaysis
of the relationship between nucleotide sequence and functiona
activity. Nucleic Acids Res., 14, 6661-6679.

Tatusov,R.L., Altschul,SF. and KooninE.V. (1994) Detection of
conserved segments in proteins. Iterative scanning of sequence
databases with alignment blocks. Proc. Natl Acad. Sci. USA, 91,
12091-12095.

Wilks,S.S. (1938) Thelarge-sample distribution of the likelihood ratio
for testing composite hypotheses. Ann. Math. Sat., 9, 60-62.

577



