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Finding Motifs Using Random Projections
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ABSTRACT

The DNA motif discovery problem abstracts the task of discovering short, conserved sites
in genomic DNA. Pevzner and Sze recently described a precise combinatorial formulation
of motif discovery that motivates the following algorithmic challenge: � nd twenty planted
occurrences of a motif of length � fteen in roughly twelve kilobases of genomic sequence,
where each occurrence of the motif differs from its consensus in four randomly chosen
positions. Such “subtle” motifs, though statistically highly signi� cant, expose a weakness
in existing motif-� nding algorithms, which typically fail to discover them. Pevzner and Sze
introduced new algorithms to solve their (15,4)-motif challenge, but these methods do not
scale ef� ciently to more dif� cult problems in the same family, such as the (14,4)-, (16,5)-, and
(18,6)-motif problems. We introduce a novel motif-discovery algorithm, PROJECTION, de-
signed to enhance the performance of existing motif � nders using random projections of the
input’s substrings. Experiments on synthetic data demonstrate that PROJECTION reme-
dies the weakness observed in existing algorithms, typically solving the dif� cult (14,4)-,
(16,5)-, and (18,6)-motif problems. Our algorithm is robust to nonuniform background se-
quence distributions and scales to larger amounts of sequence than that speci� ed in the
original challenge. A probabilistic estimate suggests that related motif-� nding problems
that PROJECTION fails to solve are in all likelihood inherently intractable. We also test
the performance of our algorithm on realistic biological examples, including transcription
factor binding sites in eukaryotes and ribosome binding sites in prokaryotes.
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1. INTRODUCTION

The DNA motif discovery problem abstracts the task of discovering short, conserved sites in genomic
DNA sequence. Pevzner and Sze (2000) studied a precise combinatorial formulation of this problem

that had previously been considered by Sagot (1998). This formulation, the planted motif problem, is of
particular interest because it is intractable for commonly used motif-� nding algorithms.
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Planted (l , d)-Motif Problem: Let M be a � xed but unknown nucleotide sequence (the motif consensus)
of length l. Suppose that M occurs once in each of t background sequences of common length n, but that
each occurrence of M is corrupted by exactly d point substitutions in positions chosen independently at
random. Given the t sequences, recover the motif occurrences and the consensus M .

A particular parameterization of this problem, the so-called “challenge problem” of Pevzner and Sze
(2000), plants a (15,4)-motif (that is, a motif of length l D 15 with d D 4 substitutions per occurrence)
in each of t D 20 background sequences of common length n D 600 composed of independent random
bases with equal frequencies. Such a well-conserved motif should be easy to identify because it is highly
unlikely to occur by chance in 20 random sequences of the speci� ed length and composition. The values
of n, t , and l in the challenge problem are typical of such motif discovery problems as � nding transcription
factor binding sites in a collection of coregulated gene promoter regions in yeast.

A number of algorithms to � nd motifs have been proposed previously, including Bailey and Elkan’s
MEME (1995), Hertz and Stormo’s CONSENSUS (1999), Lawrence et al.’s Gibbs sampler (1993), and
the algorithms of Lawrence and Reilly (1990) and Rocke and Tompa (1998). These algorithms all try to
� nd a motif that maximizes some score, such as a likelihood ratio, designed to distinguish true motifs from
chance aggregations of background l-mers. The algorithms employ heuristic methods based on local search,
such as Gibbs sampling, expectation maximization, or a greedy approach, to maximize their score functions.

Although local search-based motif � nders have seen much success in practice, Pevzner and Sze (2000)
showed that CONSENSUS, GibbsDNA, and MEME all perform poorly on the (15,4)-motif challenge
problem. When presented with an instance of the challenge problem, local search methods usually terminate
at a local maximum of their score function corresponding to a randomly occurring pattern in the input,
missing the planted motif despite its much higher score. These failures suggest that the performance of
conventional motif � nders is strongly in� uenced by the precise distribution of mutations within a motif.

In addition to the local search techniques mentioned above, there are also a number of motif-� nding
algorithms, based on enumeration of all motifs or all mutation patterns, that are guaranteed to � nd the
highest-scoring motif in the input. See, for example, Blanchette et al. (2002), Brāzma et al. (1998), Galas
et al. (1985), Sagot (1998), Sinha and Tompa (2000), Staden (1989), Tompa (1999), and van Helden et al.
(1998). Unfortunately, these enumerative algorithms become impractical for motifs as long or with as
many mutations as those in the challenge problem. Other motif discovery algorithms have been proposed
by Fraenkel et al. (1995) and Rigoutsos and Floratos (1998).

Pevzner and Sze developed two novel algorithms, WINNOWER and SP-STAR, to more reliably solve
the (15,4)-motif challenge problem. Brie� y, WINNOWER constructs a graph whose vertices correspond
to all l-mers present in the t input sequences, with an edge connecting two vertices if and only if the
corresponding l-mers differ in at most 2d positions and do not both come from the same sequence.
WINNOWER then looks for a clique of size t in this graph. The second algorithm, SP-STAR, is a more
conventional local search method that starts in turn from each individual l-mer x in the input, chooses the
closest match to x from every other input sequence, and uses a sum-of-pairs score and iterative re� nement
to converge on a good motif.

Although WINNOWER and SP-STAR usually � nd planted (15,4)-motifs, they are less successful at
solving more dif� cult planted motif problems. For example, the (14,4)-, (16,5)-, and (18,6)-motif problems,
all with the same background length and composition as the challenge problem, prove intractable for the
new algorithms as well as for existing local search techniques (see Table 1).

In this work, we introduce a new motif-� nding algorithm, PROJECTION, that ameliorates the limitations
of existing motif � nders by using random projections of the input, an approach distinct from all the motif
discovery algorithms listed above. The key idea of PROJECTION is to partition the set of all l-mers in
the input sequences into buckets, such that some bucket receives several occurrences of the desired motif
and little else. Having several copies of the motif in hand greatly enhances the ability of local search
techniques to � nd motifs that would otherwise be missed. To achieve the desired partition, we choose k

of the l positions in the unknown motif at random (the value of k to be determined later), then hash every
l-mer x into a bucket f .x/ determined by its bases at these k positions. A bucket receiving an unusually
large number of l-mers has an elevated probability of being enriched for the motif.

Antecedents of our PROJECTION algorithm include projection-based techniques for sparse indexing
of databases and for high-dimensional computational geometry. Estimates of similarity based on sparse
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sampling of positions from feature vectors have long been used in machine vision to match a perceived
object against a database of known objects (Duda and Hart, 1973, Chapter 6); in the vision and com-
putational geometry communities, this technique has a distinguished history under the name “geometric
hashing” (Wolfson and Rigoutsos, 1997). Analytical proof of the sensitivity of uniform, randomized geo-
metric hashing for � nding near neighbors of points in a high-dimensionalmetric space appears in Indyk and
Motwani’s work on “locality-sensitive hashing” (Indyk and Motwani, 1998; Gionis et al., 1999), building
on theoretical work in random projection by, e.g., Johnson and Lindenstrauss (1984), Bourgain (1985),
and Linial et al. (1994).

Rigoutsos and Califano observed that projection can be applied to search problems in bioinformatics,
speci� cally to detect similarity between pairs of biosequences, by treating a � xed-length sequence as a
feature vector whose features are individual residues (nucleotides or amino acids). This observation led to
their FLASH algorithm for detecting strong pairwise local alignments between biosequences (Rigoutsos
and Califano, 1993). Buhler (2001) took a somewhat different approach, applying Indyk and Motwani’s
locality-sensitive hashing technique to obtain randomized sensitivity guarantees for genomic sequence
similarity search independent of the underlying sequence composition. Both of these applications, like the
earlier work in vision and geometry, focused on detecting similar pairs of sequences, though the techniques
used extend naturally to � nding sets of sequences that are all pairwise highly similar, after the fashion of
WINNOWER. Linial et al. (1997) used yet another randomized projection algorithm to cluster proteins.

The PROJECTION motif � nder extends previous projection-based search techniques to solve a multiple
alignment problem that is not effectively addressed by pairwise alignment. We show that random projection
can directly address the problem of � nding sets of sequences close to a common consensus without � rst
computing pairwise distances among them. Our approach of picking uniform random projections reduces
the extent to which PROJECTION’s performance depends sensitively on particular properties of the motif
being sought and simpli� es some a priori choices, such as projection size and number of projections,
that must be made to parameterize the algorithm. The new algorithm both explicitly meets Pevzner and
Sze’s planted motif challenge and demonstrates that random projection is a useful initialization technique
to improve the sensitivity of local search-based motif � nders.

We have found that PROJECTION performs better than existing local search or clique-� nding motif
� nders on planted .l; d/-motif problems. In experiments with randomly generated input sequences, PRO-
JECTION typically solved the dif� cult (14,4)-, (16,5)-, and (18,6)-motif problems. PROJECTION is also
ef� cient, typically solving Pevzner and Sze’s planted (15,4)-motif challenge problem in under two minutes
on a 667 MHz Alpha workstation. The algorithm is robust to changes in the background base distribution
and continues to outperform existing methods as the length n of the input sequences increases.

A probabilistic analysis given in Section 3.2 suggests (again for Pevzner and Sze’s parameters t D 20
and n D 600) that those small values of d for which PROJECTION fails to recover planted .l; d/-motifs are
in all likelihood inherently intractable. Speci� cally, problem instances with these parameters are likely to
contain spurious motifs that are as well conserved as the planted motif. For example, 20 random sequences
of length 600 (with no planted motif) are expected to contain at least one (9,2)-motif by chance, whereas
the expected number of (10,2)-motifs that they contain is approximately 10¡7. Similar statements can
be made for (11,3)- versus (12,3)-motifs, (13,4)- versus (14,4)-motifs, (15,5)- versus (16,5)-motifs, and
(17,6)- versus (18,6)-motifs. Thus, there is a rather sharp line between those planted motif problems that
PROJECTION solves and those that inherently cannot be solved.

The remainder of this work is organized as follows. Section 2 describes the PROJECTION algorithm,
including both the key random projection phase and the local search that bene� ts from it, and provides
some insight into why the algorithm works. Section 3 is devoted to experimental results. In Section 3.1, we
test PROJECTION’s performance on synthetic instances of the (15,4)-motif challenge and more dif� cult
planted motif problems. Sections 3.3 and 3.4, respectively, determine the performance impact of introducing
background sequences with nonuniform distributions and longer lengths than in the original challenge
problem.

In Sections 3.5 and 3.6, we complement our synthetic results by addressing realistic biological motif-
� nding problems, � rst identifying transcription factor binding sites in the promoter regions of eukaryotic
genes, then tackling the problem of � nding ribosome binding sites in prokaryotes. The promoter data sets
contain just a few motif occurrences in an equal number of sequences, while the ribosome binding site
data sets consist of thousands of nucleotide sequences, only a fraction of which contain the motif. We
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validate the motifs found by PROJECTION by comparing them to published sites from the literature and,
for ribosome binding sites, to their complementary 16S rRNA sequences.

2. THE PROJECTION ALGORITHM

2.1. Why planted motif problems are dif� cult

To motivate the development of PROJECTION, we begin with an example to illustrate why local search-
based motif � nders have dif� culty solving planted .l; d/-motif problems. Figure 1 shows two hexamer
motifs, A and B, each consisting of � ve approximate occurrences of the consensus sequence CCATAG. Each
occurrence differs from the consensus by exactly two substitutions. In terms of mutations per occurrence,
these two motifs are equally well conserved. However, given equal amounts of background sequence, motif
A is more likely than B to be found by motif � nders, such as MEME and GibbsDNA, that are based on
local search.

The difference between motifs A and B is that the mutations in B, as speci� ed in the planted .l; d/

problem formulation, are distributed uniformly across its positions, while those in A are con� ned to its
two center positions. This difference makes B harder to � nd for two reasons. First, despite having the same
number of mutations, motif B has only slightly more than half the information content of A (4.4 versus
8.2 bits). Algorithms that score motifs using statistical measures related to information content will have
more trouble separating motif B from the background.

A second, more insidious problem is the fact that the average Hamming distance between occurrences
of motif B is large—3.6 substitutions versus only 1.6 for motif A. Local search methods typically start
their search by guessing a single occurrence (alternatively, several independent occurrences) of the motif,
then try to � nd additional occurrences by selecting l-mers similar to the initial guess. Local search is
likely to terminate at a local maximum different from the motif if the background contains substantial
“noise,” i.e., random l-mers that are more similar to the initial guess than are other true occurrences of
the motif. A larger average distance between motif occurrences increases the chance that the l-mers most
similar to an initially guessed occurrence are not other copies of the motif but random sequences from the

FIG. 1. Two hexamer motifs in which each occurrence differs by exactly two substitutions from the string CCATAG.
Lower case letters indicate substitutions. Although the two motifs have the same number of substitutions overall,
motif B’s substitutions are distributed uniformly throughout its occurrences (as in the challenge problem), while A’s
substitutions are concentrated in its two center positions.
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background. For example, a DNA hexamer chosen uniformly at random has probability 0.038 of matching
a � xed motif occurrence to within two substitutions, but it has probability 0.466 of matching it within four
substitutions.1 Hence, local search methods using typical initialization strategies encounter substantially
more noise when � nding motif B and so are more likely to fail.

We can make local search more robust to a large average distance between motif occurrences by
improving the way the search is initialized. Suppose we initially guess s > 1 occurrences of motif B.
For example, suppose s D 3, and we somehow guess the � rst, second, and fourth occurrences of B in
Fig. 1. The consensus of these three strings is CNATAG, which differs from the true motif’s consensus in
only one position and from its occurrences by an average of 2.6 substitutions—substantially less than the
average distance between one occurrence and another. Starting with multiple occurrences permits an initial
guess that more closely resembles the true motif and so decreases the opportunity for noise to confound
subsequent local search.

The main problem with a more robust initialization strategy is its computational cost. We do not know
where the motif appears in the input, so to � nd s occurrences we might naively guess every (multi)set of s

l-mers in the input as a starting point for local search, requiring . t
s
/.n ¡ l C 1/s searches overall. Even for

small s, exhaustive enumeration and testing of all such guesses is prohibitively expensive. PROJECTION
takes a different approach: it randomly samples multisets of at least s (nonindependent) l-mers in a way
that is biased toward picking sets of motif occurrences. Speci� cally, PROJECTION prefers sets of l-mers
that are likely to be similar to (i.e., to have few substitutions versus) a common consensus.

2.2. Initialization through random projection

The initial goal of PROJECTION is to guess at least s occurrences of an (unknown) planted motif. To
this end, the algorithm performs m independent trials, each of which may generate multiple guesses. In
each trial, it chooses a random projection f and hashes each l-mer x in the input to a bucket labeled f .x/.
Any bucket receiving suf� ciently many entries is explored as a potential motif, using a local search-based
re� nement procedure described in the next section.

As outlined in Section 1, the projections f are constructed by choosing k positions uniformly at random
without replacement from the set f1 : : : lg, for a value of k to be determined later. If x is an l-mer, then f .x/

is simply the k-mer that results from concatenating the bases at the selected k positions of x. Viewing x

as a point in an l-dimensional Hamming space, f .x/ is the projection of x onto a k-dimensional subspace.
Let M be the unknown motif’s consensus. De� ne the planted bucket to be that bucket labeled with hash

value f .M/. The fundamental intuition underlying random projection is that, if k < l ¡ d , there is a good
chance that at least s occurrences of M will hash together into the planted bucket. At the same time, if k

is not too small, it is unlikely that many random l-mers from the background sequence will hash to the
planted bucket, because each such l-mer must agree with M in all k sampled positions. Thus, the l-mers
in the planted bucket will likely be highly enriched for the planted motif. Of course, the algorithm does
not know which bucket is the planted one and so attempts to recover the motif from every bucket that
receives at least s l-mers. (On occasion, PROJECTION actually succeeds in recovering the correct motif
by re� ning some bucket other than the planted bucket, which is an added bonus.)

To fully specify the PROJECTION algorithm, we must describe how to compute both the projection
size k and the number of trials m as a function of the algorithm’s parameters l, d , n, t , and s and the
probability q that the algorithm successfully hashes at least s motif occurrences to the planted bucket. We
must also describe how to choose s, which while notionally an input to the algorithm is not a “natural”
parameter for motif � nding.

We choose the projection size k so as to minimize contamination of the planted bucket by random back-
ground sequences. Suppose we require at most E background l-mers per bucket on average. PROJECTION
hashes t .n ¡ l C 1/ l-mers into 4k buckets, so if we set

k ¸ log4

³
t .n ¡ l C 1/

E

´
;

1Using more realistic parameters, a random 15-mer will match a � xed occurrence of a (15,4)-motif to within four
substitutions with probability 1:2 £ 10¡4, but it has a greater than 5% chance of matching within eight substitutions.
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then the expected number of background l-mers per bucket is at most E. We normally � x E < 1 so that
the planted bucket is expected to contain less than one l-mer from the background sequence.

The number of trials m must be set large enough so that with probability at least q , some trial produces a
planted bucket containing at least s motif occurrences. The probability q is computed over both the random
choices of projections and the random distribution of mutations in the problem instance. We generally set
q D 0:95, which is high enough that PROJECTION often produces planted buckets with at least s motif
occurrences in several trials, providing some robustness against unsuccessful re� nements.

Because PROJECTION chooses its projections uniformly at random, each motif occurrence in the planted
model hashes to the planted bucket with probability Op.l; d; k/, de� ned by

Op.l; d; k/ D

³
l ¡ d

k

´

³
l
k

´ :

In particular, those planted occurrences for which the d mutated positions are disjoint from the k hash
positions will hash to the planted bucket. Let Ot be an estimate of the number of input sequences containing
a planted motif occurrence (Ot D t for our synthetic challenge problems and promoter examples). Then the
probability that fewer than s planted occurrences hash to the planted bucket in a given trial is BOt ; Op.l;d;k/.s/,
where Bt;p.s/ is the probability that there are fewer than s successes in t independent Bernoulli trials,
each trial having probability p of success. We may assume that the trials for different motif occurrences
are independent because the problem formulation states that mutations appear independently at random in
each occurrence.

If PROJECTION is run for m trials, the probability that s or more motif occurrences hash to the planted
bucket in at least one trial is

1 ¡
h
BOt ; Op.l;d;k/.s/

im
¸ q:

In order to satisfy this inequality, choose

m D

&
log.1 ¡ q/

log.BOt; Op.l;d;k/.s//

’

: (1)

It remains to describe how to choose the bucket size threshold s. We must choose s large enough so
that a bucket with at least s true motif occurrences is likely to produce the planted motif after re� nement.
Unfortunately, we know of no theory that determines a lower bound for s from this criterion, though we
have found empirically that in experiments on problems containing 4–20 motif occurrences in background
sequences of 600–1,000 bases, setting s D 3 or 4 usually works well. An alternative lower bound for
s follows from ef� ciency considerations: we wish to discard buckets composed entirely of background
l-mers, which are unlikely to be useful as starting points for re� nement. We assume for simplicity that
in a collection of random background sequences, the number of l-mers x that project to a common hash
value y is approximately Poisson-distributed with a mean ¹y given by

¹y D t .n ¡ l C 1/ Pr
x

[f .x/ D y]

where the latter probability is computed over the background distribution of l-mers x. The Poisson as-
sumption derives from the fact that we are counting occurrences of a short � xed pattern, namely the bases
of y appearing in the positions read by f , in the background sequence. We set the threshold size s for
each bucket to the larger of its empirically derived value and the 90th percentile value of the bucket’s size
distribution.

In the case of nonuniform background base frequencies, the probability Pr[f .x/ D y] may be different
for each bucket, producing larger thresholds for buckets likely to contain many background l-mers purely
by chance. For a uniform background, this probability is always 1=4k . In the experiments performed in
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this work, the empirical value of s is larger than the lower bounds implied by the 90th percentile size for
most buckets, so we use the empirical s to calculate m.

Using the above criteria for m, k, and s, � nding motifs in problems of the sizes considered here requires at
most thousands of trials, and usually many fewer, to produce a bucket containing enough motif occurrences
for effective re� nement.

2.3. Motif re�nement and scoring

PROJECTION re� nes each suf� ciently large bucket in hopes of recovering the planted motif. If the
bucket being re� ned is the planted bucket, its l-mers already match the motif’s consensus in at least k

positions. These positions plus the information in the remaining l ¡ k positions of the bucket’s l-mers
provide a strong signal, starting from which a few iterations of re� nement should lead to the correct motif.

It is important to note that PROJECTION is primarily an initialization strategy that produces starting
points for re� nement. We describe one particular re� nement method below, but PROJECTION could instead
be adjoined to the local search phases of existing motif � nders like MEME or GibbsDNA. The re� nement
phase, whatever algorithm it uses, is ultimately responsible for producing the most signi� cant motif from
the starting points offered and discarding all other candidates. Hence, we need not be concerned (except
for reasons of ef� ciency) by the fact that most large buckets passed to re� nement are “false positives” that
do not lead to a signi� cant motif.

Our primary tool for re� ning candidate motifs is expectation maximization (EM), as formulated for the
motif-� nding problem by Lawrence and Reilly (1990). This EM formulation derives from the following
simpli� ed probabilistic model. An occurrence of the motif appears exactly once in each input sequence.
Motif occurrences are generated at random from a 4£ l weight matrix model W whose .i; j/th entry gives
the probability that base i appears in position j of an occurrence, independent of its other positions. The
remaining n ¡ l residues in each sequence are chosen independently at random according to a background
base distribution P . Although this model only approximates the motifs of real biosequences, it is both
simple and sensitive enough to let EM identify meaningful motifs in practice. Bailey and Elkan (1995)
give more accurate motif models, though � tting their parameters from sequence data requires signi� cantly
more computation.

Let T be a set of t input sequences, and let P be the background distribution. EM-based re� nement
seeks a weight matrix model W ¤ that maximizes the likelihood ratio

LR.W ¤/ D Pr.T j W ¤; P /

Pr.T j P /
;

that is, a motif model that explains the observed sequences much better than the background model alone.
The position at which the motif occurs in each sequence is not � xed a priori, making computation of
W ¤ dif� cult because Pr.T j W ¤; P / must be summed over all possible positions for the occurrences. To
address this dif� culty, the core EM algorithm (Dempster et al., 1977) speci� es an iterative calculation that,
given an initial guess W1 at the motif model, converges linearly to a locally maximum-likelihood model
in the neighborhood of W1.

PROJECTION performs EM re� nement on every bucket with at least s l-mers. It forms an initial guess
Wb from a bucket b as follows: set Wb.i; j / to be the frequency of base i among the j th positions of all
l-mers in b. This guess forms a centroid for b, in the sense that positions that are well conserved in b are
strongly biased in Wb, while poorly conserved positions are less biased. In order to avoid zero entries in
Wb, we add a Laplace correction of pi to Wb.i; j/, where pi is the probability of base i in the background
sequence.

Because EM converges only linearly, running it to convergence for every Wb would be computationally
prohibitive. Fortunately, just a few iterations of EM (� ve in our implementation) can signi� cantly improve
a well-chosen starting model to the point where it identi� es the planted motif. Let W ¤

b be the candidate
motif model re� ned from Wb. We form a guess at the planted motif by selecting from each input sequence
the l-mer x with the largest likelihood ratio Pr.x j W ¤

b /= Pr.x j P /. This multiset Sb of l-mers represents
the motif in the input that is most consistent with the model W ¤

b .
PROJECTION generates re� ned guesses for every suf� ciently large bucket and for every trial, but we

wish to pick a single best motif to report to the user. For the biological examples of Section 3.5, we
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score each re� ned motif Sb according to its likelihood as follows. Let WSb be the weight matrix model
inferred from Sb (in the same way that we form initial guesses). Then the likelihood ratio score LR.Sb/

is de� ned as

LR.Sb/ D
Y

x2Sb

Pr
£
x j WSb

¤

Pr [x j P ]
:

We report the motif S¤ that maximizes this score over all buckets and all m trials.
To maximize the number of motif occurrences recovered in the synthetic challenge problems of Section

3.1, we perform a further combinatorial re� nement of each Sb . This further re� nement process is similar
to SP-STAR (Pevzner and Sze, 2000) but uses a different score function. Compute the consensus Mb of
the sequences in Sb, and de� ne the score ¾ .Sb/ to be the number of sequences in Sb whose Hamming
distance to Sb is at most d . Let S 0

b contain the l-mer from each input sequence that is closest in Hamming
distance to Mb. If ¾ .S 0

b/ > ¾.Sb/, replace Sb by S 0
b and repeat. This re� nement usually converges in

a few iterations. Again, we report the motif S¤ for which ¾ .S¤/ is maximum over all buckets and all
m trials.

3. EXPERIMENTAL RESULTS

3.1. Challenge problems on synthetic data

We � rst tested PROJECTION on synthetic problem instances generated according to the planted .l; d/-
motif model. Pevzner and Sze (2000) showed such problems to be intractable to most existing motif
� nders even for l D 15 and d D 4, so they are natural test cases for our algorithm. We produce problem
instances as follows: � rst, a motif consensus M of length l is chosen by picking l bases at random. Second,
t D 20 occurrences of the motif are created by randomly choosing d positions per occurrence (without
replacement) and mutating the base at each chosen position to a different, randomly chosen base. Third,
we construct t background sequences of length n D 600 using n ¢ t bases chosen at random. Finally, we
assign each motif occurrence to a random position in a background sequence, one occurrence per sequence.
All random choices are made uniformly and independently with equal base frequencies. This generation
procedure corresponds to the “FM” model used in the challenge problem described by Pevzner and Sze.

We report the performance of PROJECTION using the performance coef� cient of Pevzner and Sze
(2000), de� ned as follows. Let K denote the set of t ¢ l base positions in the t occurrences of a planted
motif, and let P denote the corresponding set of base positions in the t occurrences predicted by an
algorithm. Then the algorithm’s performance coef� cient on the motif is de� ned to be jK \ P j=jK [ P j.
When all occurrences of the motif are found correctly, the performance coef� cient achieves its maximum
value of one.

Table 1 compares the performance of PROJECTION with that of previous motif-discovery algorithms on
sets of 100 random problem instances, each generated as described above. All experiments used projection
size k D 7 and bucket size threshold s D 4, which combined with the problem parameters requires
numbers of trials m as shown in the table. The values of m are determined by Equation (1). For each
set of problem parameters, we give the average performance coef� cient for PROJECTION as well as the
number of problem instances (out of 100) for which it correctly recovered the planted motif’s consensus.
For comparison, we provide corresponding average performance coef� cients for three other algorithms:
GibbsDNA, WINNOWER (k D 2), and SP-STAR. The data for previous algorithms was collected and
summarized by Pevzner and Sze (2000, Figs. 1 and 2).

In every line of Table 1, the average performance coef� cient of PROJECTION is at least as great as
that of any of the previous algorithms. PROJECTION correctly solved planted (11,2)-, (13,3)-, (15,4)-,
(17,5)-, and (19,6)-motif problems at least 98 times out of 100; in these cases, average performance
coef� cients less than one occurred primarily because our algorithm, like any motif � nder, sometimes
picked as a motif occurrence a background l-mer that was at least as similar to the correct consensus as
was the true occurrence. The (11,2)-, (13,3)-, and (15,4)-motif problems were roughly equally accessible
to WINNOWER, somewhat less so to SP-STAR.
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Table 1. Average Performance Coef� cients for Planted .l; d/-Motifs in Synthetic Dataa

l d GibbsDNA WINNOWER SP-STAR PROJECTION Correct m

10 2 0.20 0.78 0.56 0.80 § 0.02 100 72
11 2 0.68 0.90 0.84 0.94 § 0.01 100 16
12 3 0.03 0.75 0.33 0.77 § 0.03 96 259
13 3 0.60 0.92 0.92 0.94 § 0.01 100 62
14 4 0.02 0.02 0.20 0.71 § 0.05 86 647
15 4 0.19 0.92 0.73 0.93 § 0.01 100 172
16 5 0.02 0.03 0.04 0.67 § 0.06 77 1292
17 5 0.28 0.03 0.69 0.94 § 0.01 98 378
18 6 0.03 0.03 0.03 0.73 § 0.06 82 2217
19 6 0.05 0.03 0.40 0.94 § 0.01 98 711

aEach problem instance consists of t D 20 sequences each of length n D 600. Average performance coef� cients of GibbsDNA,
WINNOWER (k D 2), and SP-STAR are from Pevzner and Sze (personal communication), who averaged over eight random instances.
For PROJECTION, we report averages and 95% con� dence intervals for performance coef� cient over 100 random instances with
projection size k D 7 and threshold s D 4.

PROJECTION’s improved performance is more striking on the more dif� cult planted (14,4)-, (16,5)-,
(17,5)-, (18,6)-, and (19,6)-motif problems. Our algorithm’s performance on these problems substantially
exceeds that of previous algorithms, including those of Pevzner and Sze, which typically fail to � nd the
planted motifs. Finding each synthetic motif in the most dif� cult (18,6) problem required about one hour
on a 667 MHz Alpha workstation; easier problems like (15,4) were typically solved in only a few minutes.

3.2. Limitations on solvable (l,d)-motif problems

Although PROJECTION performs well on the planted motifs of Table 1, it generally fails to � nd motifs
with slightly different parameters, such as (9,2)-, (11,3)-, (13,4)-, (15,5)-, or (17,6)-motifs (again for t D 20
and n D 600). We naturally investigated why our algorithm tends to fail on problems that seem quite similar
to the original challenge.

A probabilistic analysis suggests that problems involving planted motifs with the parameters given above
are quantitatively different from the problems in Table 1. For example, 20 random sequences of length 600,
with no planted motif, are expected to contain more than one spurious (9,2)-motif by chance, whereas the
expected number of (10,2)-motifs that they contain is approximately 6:1£ 10¡8. We derive these estimates
as follows. Let
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be the probability that a � xed l-mer occurs with up to d substitutions at a given position of a random
sequence. Then the expected number of length-l motifs that occur with up to d substitutions at least once
in each of t random length-n sequences is approximately

E.l; d/ D 4l
±

1 ¡ .1 ¡ pd/n¡lC1
²t

:

This expectation is only an estimate because overlapping occurrences of a given consensus string M do
not occur independently in the background.

Table 2 lists relevant values of E.l; d/ and E.l C 1; d/ for comparison. In each line of the table,
the expected number of spurious .l; d/-motifs is around 1–5, whereas the expected number of spurious
.l C 1; d/-motifs is negligible. We therefore expect that on the speci� ed .l; d/-problems, PROJECTION,
or for that matter any other algorithm, is likely to report a spurious motif as good as the planted motif,
even if it usually succeeds on the corresponding .l C 1; d/-motif problems.

The values E.l; d/ in Table 2 are only estimates of the expectations, which we do not know how
to compute precisely. However, we do know from an exhaustive enumeration of 9-mers and an exact
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Table 2. Statistics of Spurious .l; d/-Motifs in Synthetic Dataa

l d E.l; d/ E.l C 1; d/ a.p.c. Correct Spurious 19/20 m

9 2 1.6 6:1 £ 10¡8 0.28 11 5 4 1483
11 3 4.7 3:2 £ 10¡7 0.026 1 13 6 2443
13 4 5.2 4:2 £ 10¡7 0.062 2 15 3 4178
15 5 2.8 2:3 £ 10¡7 0.018 0 7 13 6495
17 6 0.88 7:1 £ 10¡8 0.022 0 8 12 9272

aParameters used were k D 7, s D 4, m as shown. Column headings: “a.p.c.” = average performance coef� cient over twenty
problem instances; “Correct” = instances yielding correct motif consensus; “Spurious” = instances yielding equally good but spurious
consensus; “19/20” = instances yielding a consensus with nineteen occurrences.

calculation of their probabilities in twenty random 600-mers that the expected number of spurious (9,2)-
motifs is 1.621. (The probability calculation was done using an algorithm described by Tompa [1999,
Section 3.1].) Thus, the estimates may not be too inaccurate in practice. Such an exhaustive analysis for
much greater values of l is, unfortunately, computationally impractical.

To further corroborate our analysis, we ran PROJECTION on sets of 20 random instances of the planted
.l; d/-motif problems of Table 2 generated as described in the previous section. The algorithm’s perfor-
mance on these sets is also reported in Table 2, including the average performance coef� cient, the number
of problem instances in which the correct consensus was found, and the number of instances where we
instead found a spurious .l; d/-motif appearing in all 20 input sequences. Where PROJECTION failed to
� nd either the correct or an equally good spurious motif, it found a motif (again not the planted one)
occurring in 19 of the 20 input sequences. These experiments provide further evidence that the .l; d/-motif
problems that PROJECTION consistently fails to solve are fundamentally less tractable because they con-
tain spurious motifs that are as well conserved as, and hence cannot be distinguished from, the planted
motif.

3.3. Performance versus background base distribution

Real biosequences frequently have base compositions different from the equal base frequencies used in
the experiments of Section 3.1. We therefore tested the performance of PROJECTION on synthetic motif-
� nding problems with background sequences of varying composition. These problems were constructed
and solved identically to those of Section 3.1, except that we chose a background GCC fraction µGC , then
generated the background sequence from a distribution with Pr[G] D Pr[C] D µGC=2 and Pr[A] D Pr[T ] D
.1 ¡ µGC /=2. We continued to generate planted motifs from a distribution with equal base frequencies.

Figure 2 shows the performance of PROJECTION on both (15,4)- and more challenging (14,4)-motifs at
different background compositions. The algorithm’s performance, as measured by the average performance
coef� cient, was not signi� cantly changed on (15,4)-motifs down to 35% G C C and on (14,4)-motifs
down to 40% G C C. Below these thresholds, recovery of the motif drops off precipitously, with average
performance coef� cients below 0.1 occurring at 35% G C C for (14,4)-motifs and 25% G C C for (15,4)-
motifs.

The major performance drops for highly biased G C C contents occur because a biased background is
more likely to produce problem instances that, like those of Section 3.2, by chance contain spurious motifs
at least as good as the planted motif. In support of this claim, we observe that in every problem instance
with 35% or lower G C C where the algorithm failed to � nd the planted motif, it found a collection
of twenty l-mers that were at least as well conserved. For (14,4)-motifs in particular, this behavior is
radically different from the normal failure mode at 45% and 50% G C C: of the roughly 15% of trials
that failed at these G C C contents, none found a spurious motif as well conserved as the planted one.
This observed shift from � nding suboptimal motifs to � nding spurious but optimal motifs provides strong
empirical evidence for the high frequency of spurious motifs at more biased G C C contents.

We conclude that the performance of the PROJECTION algorithm on sequences of biased G C C

content is limited primarily by the appearance of spurious motifs as good as the planted motif. In the
absence of such spurious motifs, PROJECTION’s ability to � nd the planted motif is robust to moderate
changes in G C C.
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FIG. 2. Performance of PROJECTION on synthetic motif-� nding problems with unequal background base frequen-
cies. Problems were generated as in Section 3.1, except that the background G CC fraction was set to values different
from 0.5 as shown. Problem instances contained either (15,4)-motifs (solid line) or (14,4)-motifs (dashed line) generated
with equal base frequencies. Error bars indicate 95% con� dence intervals over 100 random trials.

3.4. Performance versus background sequence length

We tested PROJECTION’s ability to handle increasingly noisier problems by � nding planted motifs
in increasingly large amounts of background sequence. Longer backgrounds contain more random l-mers
similar to real motif occurrences, as well as more collections of l-mers almost as well conserved as the
true motif. Both phenomena increase the chance that local search will terminate at a suboptimal local
maximum instead of � nding the true motif.

Figure 3 shows the performance of PROJECTION on (15,4)- and (14,4)-motifs for background lengths
ranging from n D 600 to n D 2000. Other than the increased length n, problem instances were generated
identically to those of Section 3.1. All experiments used the parameters given in Table 1 for (15,4)- and
(14,4)-motifs. In these experiments, we retained the projection size k D 7 at all lengths, even though for
backgrounds longer than 800 bases, setting k D 7 causes the average bucket size to exceed one l-mer.
Setting k D 8 would have kept the average bucket size below one but would have required an order of
magnitude more iterations (m D 1,987 for (15,4) and m D 14,860 for (14,4)) to maintain a 95% probability
of producing a planted bucket with at least s D 4 occurrences of the motif.

PROJECTION’s performance on (15,4)-motifs degraded gracefully with increasing length, from an av-
erage performance coef� cient of 0.93 for n D 600 to 0.53 at n D 2,000. As predicted, some of the
decay could be attributed to failures to � nd the planted motif at all (in 32 of 100 problem instances
for n D 2,000), while the rest was attributable to admixture of background l-mers into otherwise cor-
rect motifs. The complete failures were consistent with a proliferation of suboptimal local maxima. For
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FIG. 3. Performance of PROJECTION on synthetic motif-� nding problems with increasing background sequence
lengths. Problems were generated as in Section 3.1, except that the background sequence length was scaled from
n D 600 to n D 2,000 as shown. The number of sequences was maintained at t D 20. Problem instances contained
either (15,4)-motifs (solid line) or (14,4)-motifs (dashed line). Error bars indicate 95% con� dence intervals over
100 random trials.

example, at n D 2,000 the failed problem instances all yielded spurious (15,4)-motifs with 16 to 18 occur-
rences, which by the estimates of Section 3.2 are expected to occur frequently by chance at this back-
ground size.

Finding (14,4)-motifs proved much harder at increased sequence lengths. The algorithm’s ability to � nd
the planted motif degraded more rapidly, from an average performance coef� cient of 0.72 at n D 600 to
0.17 at n D 1,400. Again, the frequent appearance of spurious motifs with 16 or 17 occurrences arose
concurrently with the failure of local search. However, as the background length increased to 1,000 bases
and beyond, an increasing fraction of failures were again attributable to the presence of spurious (14,4)-
motifs with a full 20 occurrences. By n D 1,400, such spurious motifs accounted for nearly half of all
observed failures, compared to none at n D 800. Again, this behavior provides empirical evidence that the
performance of PROJECTION is in part limited by the increasing frequency of spurious motifs in longer
backgrounds.

Increased length testing is useful not only to determine the absolute performance of PROJECTION but
also to compare its performance to that of previous algorithms, including the specialized methods of Pevzner
and Sze. Previous motif � nders usually fail to � nd (15,4)-motifs when n D 1,000, exhibiting a performance
coef� cient of 0.23 or less (Pevzner and Sze, 2000, Table 1). Only WINNOWER, a non-local-search-based
motif � nder, maintains an average performance coef� cient of at least 0.8 at this background size, and that
only with parameter k D 3. PROJECTION’s comparatively high performance, even for n D 2,000, again
demonstrates the power of augmenting ordinary local search with intelligent initialization.
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3.5. Transcription factor binding sites

To test PROJECTION on realistic biological data, we used it to � nd known transcriptional regulatory
elements upstream of eukaryotic genes. We examined orthologous sequences from a variety of organisms
taken from regions upstream of four types of gene: preproinsulin, dihydrofolate reductase (DHFR), met-
allothioneins, and c-fos.2 These sequences are known to contain binding sites for speci� c transcription
factors. We also tested a collection of promoter regions3 from the yeast S. cerevisiae that are known to
contain a common cell-cycle-dependent promoter, the ECB element (McInerny et al., 1997).

The motifs in these data sets are much better conserved than those in our synthetic problem instances,
with little variation and a structure more like the simple motif A of Fig. 1 than like the more subtle B.
In general, we have been unable to locate published examples of biological motifs as subtle as those of
Section 3.1, but the dearth of such examples need not imply that subtle motifs do not exist biologically.
Motifs like those in the planted .l; d/ model are inaccessible to existing computational search techniques,
and a high degree of conservation is necessary to detect a motif at all given only four or � ve occurrences.
For example, a (15,4)-motif occurring only � ve times with uniformly distributed mutations would be
statistically meaningless in a background like those of our promoter data sets. Many published motifs were
likely inferred using few enough sequences that a subtle .l; d/-motif would have been impossible to detect.

In all experiments, we set l D 20 and d D 2 to re� ect the approximate lengths and degrees of conservation
of published motifs. Following the rule of Section 2.2 that we should choose k large enough to achieve
less than one expected background l-mer per bucket, we chose a uniform projection size k D 7 for all
experiments. Because the inputs contained only 4–5 sequences, we set a smaller than usual bucket size
threshold s D 3 so as not to demand that all motif occurrences in the input end up in one bucket.
We note that the parameters that generated the results reported here were chosen a priori without prior
experimentation on these data sets; subsequent testing with slightly different parameters suggests that our
results are robust to small changes in l and k. Given the high expected amount of conservation and the low
size threshold, the numbers of iterations m computed from Equation (1) proved quite small, requiring only
a few seconds of running time. Motifs were scored by likelihood ratio score as described in Section 2.3.

Table 3 gives for each experiment the consensus strings of the highest-scoring motifs found by PROJEC-
TION, along with published motifs that closely match substrings of these consensuses. For experiments
listing multiple motifs, the � rst motif listed is the one of highest score. The locations of motif occurrences
were not known a priori, so we do not give performance coef� cients. Analysis of the preproinsulin pro-
moter region yielded a motif known from the TRANSFAC database (Wingender et al., 1996), while the
other four experiments all produced motifs corresponding to experimentally veri� ed transcription factor
binding sites (see Table 3).

In cases where a data set contained several distinct known binding sites, we attempted to � nd additional
motifs beyond that of highest score. To � nd multiple motifs, we masked the motif of highest score, replacing
each base in its occurrences with X, then reran the motif � nder on the masked sequences. This procedure
proved effective in � nding the additional documented motifs listed in Table 3. In the preproinsulin data,
the second motif found contained the well-known CT-II promoter element (Boam et al., 1990), while
the second and third motifs from the metallothionein data respectively contained the MREd and MREf
promoter elements of Andersen et al. (1987).

In addition to the promoter sequences listed in Table 3, we ran PROJECTION on a set of 20 1,000-base
C. elegans promoter regions containing the “X box” motif RYYNYYATRRNRAC , the target site for the DAF-19
transcription factor (Swoboda et al., 2000). The genes from which these sequences are taken were chosen
by P. Swoboda (personal communication) because their expression is likely regulated by DAF-19. Some
genes exhibit empirical evidence of such regulation, while the remainder were chosen because they exhibit
an occurrence of the X box motif between 50 and 300 bases upstream of the translation start site.

The X box looks somewhat more like the subtle motifs for which PROJECTION was designed. Only 4 of
the 14 positions in the motif are perfectly conserved across all 20 occurrences; of the remaining positions,
1 is poorly conserved, while the rest exhibit a strong preference for either purine or pyrimidine, with

2Sequences were kindly provided by M. Blanchette; see Blanchette (2001) for a list of organisms used and an
alternative approach to � nding motifs in these sequences.

3Genes used: SWI4, CLN3, CDC6, CDC46, and CDC47.
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Table 3. Performance of PROJECTION on Eukaryotic Promoter Sequencesa

Input size Start Best (20,2) motif Published
Sequence (seqs/bases) m points from PROJECTION reference motif

preproinsulin 4/7689 15 5759 GAAATTGCAGCCTCAGCCCC CCTCAGCCCCb

5322 CCCTAATGGGCCAGGCGGCA CTAATGc

DHFR 4/800 15 175 TGCAATTTCGCGCCAAACTT ATTTCnnGCCAd

metallothionein 4/6823 15 3363 CTCTGCGCCCGGACCGGTTC TGCRCYCGGe

3136 GTGCGCTCGGCTCTGCCAAG TGCGCTCGGf

2937 AGGGAGCTCTGCACACCACC TGCACACCGg

c-fos 4/3695 8 1071 ATATTAGGACATCTGCGTCA : : : CCATATTAGGACATCTh

yeast ECB 5/5000 8 1339 GGAAATTTCCCGTTTAGGAA TTtCCcnntnaGGAAAi

aAll motifs were found using parameters l D 20, d D 2, k D 7, and s D 3. Underlined portions of motifs indicate matches to
known sequence features. “Start points” counts total number of buckets used as start points for EM re� nement.

bTRANSFAC signal (Wingender et al., 1996).
cCT-II element (Boam et al., 1990).
dNon-TATA transcription start signal (Means and Farnham, 1990).
eMREa promoter (Andersen et al., 1987).
f MREd promoter (Andersen et al., 1987).
gMREf promoter (Andersen et al., 1987).
h30 end of c-fos serum response element (Natsan and Gilman, 1995).
iYeast early cell cycle box (McInerny et al., 1997).

one base appearing in 13–19 occurrences. PROJECTION easily found 19 of 20 known motif occurrences
(performance coef� cient 0.90) using parameters l D 14, d D 2, k D 8, m D 6, and s D 4; again,
further experimentation suggested that the algorithm’s performance was not highly sensitive to the exact
parameters used. The 20th annotated occurrence was not found, but the l-mer reported by PROJECTION
had a higher likelihood ratio than the annotated occurrence and, based on its position in the sequence,
could conceivably be a second occurrence of the X box site.

Although the motifs we found are not particularly subtle and indeed have previously been found by
existing methods (Blanchette, 2001), the results of these experiments are noteworthy for two reasons. First,
we achieved good performance even with a fairly primitive re� nement strategy that did not include, e.g.,
score corrections for motif length or iteration of EM to convergence. We expect that random projection
would yield even better performance if adjoined to a more sophisticated local search procedure. Second,
because PROJECTION selectively samples good starting points for local search, it uses fewer restarts than
the usual approach of starting from each l-mer in the input in turn. As shown in Table 3, the number
of starting points in the various experiments ranged from 22% to 75% of the input sequence length—
substantially fewer than the number of starts required with the usual search initialization. For the X box,
the number of starts was 2,832, just 14% of the input length. Moreover, the reported motifs were invariably
found during several different iterations, so we could have been even more aggressive in reducing m and
therefore the number of starts. Future work should determine how aggressively m can be reduced for
“easy” motifs like those of this section without sacri� cing sensitivity.

3.6. Ribosome binding sites

To test PROJECTION’s robustness on a very different sort of biological example, we applied it to the
problem of � nding prokaryote ribosome binding sites. A ribosome binding site problem instance consists
of thousands of short DNA sequences (n D 20) taken from just upstream of the translation start site of
each of an organism’s genes. The goal is to identify the site (l ¼ 6) at which the 16S rRNA of the
ribosome binds to mRNAs transcribed from the genes. It is known that this binding site is approximately
complementary to a short sequence near the 30 end of the 16S rRNA (Kozak, 1983).

The ribosome binding site problem poses challenges to PROJECTION not encountered in previous
sections. First, because of incorrect gene annotation and other limitations, only a fraction of the sequences
in any problem instance actually contain a ribosome binding site. To model this phenomenon, we set
Ot D t=3 in Equation (1) when determining the number of iterations to perform. Second, the total amount of
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sequence in this problem is suf� ciently large that we cannot choose k to simultaneously satisfy k < l ¡ d

and achieve a contamination threshold of fewer than tens or hundreds of background l-mers. Instead, we
set k D l ¡ d ¡ 1, as large as possible, and set the bucket size threshold s to twice the average bucket
size t .n ¡ l C 1/=4k . This bound should on average select buckets in which motif occurrences (which
are numerous in these examples) outnumber background l-mers, that is, buckets with more signal than
noise. Because prokaryote genomes often have highly biased composition, some buckets may still be much
larger than the threshold s, but these buckets are discarded by the Poisson � ltering heuristic described in
Section 2.2.

For all ribosome binding site experiments, we chose l D 6, d D 1, and projection size k D 4. Table 4
shows the problem sizes t , thresholds s, and numbers of iterations m for each experiment. Again, these
values were chosen without prior experimentation on the data set. The motif predicted by PROJECTION
is shown in the column labeled “Motif.” Each experiment � nished in under three minutes on an 800 MHz
Intel Pentium III workstation.

Although random projection continued to perform well in choosing appropriate starting points for re� ne-
ment, the very different features of the ribosome binding site problems compared to the other motif-� nding
examples described here exposed the limitations of our simple re� nement procedure, forcing us to make a
somewhat ad hoc modi� cation to it. In particular, likelihood ratio scoring favored motifs with unusual nu-
cleotide composition (e.g., TCAGGA for E. coli), even if they were relatively infrequent in the input, while
combinatorial re� nement as described in the last paragraph of Section 2.3 chose very common strings
without regard for the unusualness of their composition (e.g., TAAAAT for T. maritima). Each of these
problems with re� nement af� icted roughly half the examples tested; in each case, the known ribosome
binding site motif was found but no longer received the highest score and so was not reported. In an effort
to compromise between the importance of high frequency and meaningful composition, we ultimately
altered our re� nement strategy by choosing the motifs in Table 4 using ¾ scoring but without performing
combinatorial re� nement after expectation maximization.

We believe that the dif� culties we encountered in re� ning candidate motifs in ribosome binding site
problems stem from the fact that our motif model does not properly account for sequences lacking an
occurrence of the motif. Scoring by likelihood is a common and well-founded technique, but by choosing
an occurrence from every input sequence, we include a large number of background l-mers that corrupt the
consensus reported for the motif. Our solution to this problem, though effective, remains ad hoc. A future
version of PROJECTION should instead incorporate re� nement based on a probabilistic motif model that
accounts for sequences with no motif occurrence, in particular the ZOOPS model (Bailey and Elkan, 1995)
used by MEME.

Many pieces of evidence corroborate the ribosome binding site motifs predicted by PROJECTION. The
� rst is the complementarity of these motifs to the 30 end of the 16S rRNA sequences (with the possible
exception of H. in�uenzae), as shown in Table 4. More corroboration follows from the well-known fact
that in many bacteria, the binding site for the 16S rRNA during translation initiation is the Shine–Dalgarno
sequence AAGGAGG or a large substring of it (Kozak, 1983; Lewin, 1997). The reported motifs for the four
bacteria in Table 4 agree quite well with this sequence. In archaea such as M. jannaschii, the 30 end of
the 16S rRNA is missing a few terminal nucleotides compared to the bacterial rRNA sequences, and the

Table 4. (6,1)-Motifs Found as Candidate 16S rRNA Binding Sites in Prokaryotesa

Organism t s m Motif Occurrences 16S rRNA Best z-score

M. jannaschii 1679 196 14 AGGTGA 606 GGAGGTGATCC GGTGA

H. in� uenzae 1716 202 17 AGGAAA 639 TAAGGAGGTGA AAGGA

T. maritima 1846 216 13 GGAGGT 1198 GAAAGGAGGTG AGGTG

B. subtilis 4099 480 35 AGGAGG 2742 TAGAAAGGAGG AGGAG

E. coli 4287 502 35 AAGGAG 1306 TAAGGAGGTGA AGGAG

aAll experiments were performed with projection size k D 4. Column headings: t = number of sequences; s = bucket size threshold,
m D number of iterations; “Occurrences” D number of input sequences containing motif with up to one substitution; “16S rRNA” D
reverse complement to 30 end of organism’s 16S rRNA, which should be similar to true binding site; “Best z-score” D 5-mer with
greatest z-score using the algorithm of Tompa (1999).
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16S rRNA binding site is instead AGGTGAT or a large substring of it (Woese, personal communication).
Hayes and Borodovsky (1998) discovered the motif GGTGA in M. jannaschii using a Gibbs sampler, and
Tompa (1999) discovered similar binding sites in both this and three other archaeal genomes.

Tompa used a very different enumerative statistical algorithm to solve the ribosome binding site problem,
ranking motifs by their z-scores. All the motifs found by PROJECTION are in good agreement with the
highest-scoring motifs that his algorithm reported. For example, the last column of Table 4 shows for
each problem instance the pentamer motif, allowing no substitutions, with highest z-score. Note the strong
overlap between each of these 5-mers and the corresponding PROJECTION prediction.

Randomization is not strictly necessary to � nd good starting points for re� nement in the ribosome
binding site problem. There are only 15 different projections of a hexamer into four dimensions, so one
could ef� ciently test all possible projections rather than picking them at random. Indeed, because the
embedded motifs are so short, this particular problem has been addressed enumeratively without resorting
to iterative search techniques at all (Tompa, 1999). The signi� cance of our ribosome binding site results is
rather to show that PROJECTION is capable of solving motif-� nding problems that are quite different both
from the typical applications of Section 3.5 and from the formal motif model for which it was designed.

4. CONCLUSIONS AND FUTURE EXTENSIONS

We have described PROJECTION, a new algorithm for � nding motifs based on random projection.
PROJECTION was designed to ef� ciently solve problems from the planted .l; d/-motif model, which it
does more reliably and for substantially more dif� cult instances than previous motif � nding algorithms.
PROJECTION is robust to changes in background sequence composition and, to some extent, to long
background sequences that create noisier motif-� nding problems. For t D 20 and n D 600, our algorithm
achieves performance close to the best possible, being limited primarily by the statistical considerations of
Section 3.2.

Despite its development in a particular formal model, PROJECTION performs well on real biological
motif � nding problems, even cases as dissimilar from the model as the ribosome binding site problem.
As a general sampling technique for initializing local search, our method can extend a variety of existing
motif-� nding algorithms, both increasing their sensitivity to dif� cult motifs and reducing the number of
searches required to � nd easier motifs. Even so, we continue to seek biological motifs that are more subtle
than those described in Sections 3.5 and 3.6.

We intend to improve our implementation of PROJECTION to incorporate additional features common
to practical motif-� nding algorithms. Basic improvements include a complexity correction that would allow
predicting the length of the motif, as well as extending EM re� nement to handle sequences with multiple
motif occurrences or, as discussed in Section 3.6, sequences with no occurrence at all. Moreover, while
EM uses a probabilistic motif model, the analysis that parameterizes PROJECTION is based on a simpler
consensus model. Extending our analysis to more general motif models, besides being of theoretical interest,
might enable more intelligent parameter choices for easy motifs like those of Section 3.5, allowing us to
reduce the number of iterations performed.

A major open question is how to extend PROJECTION to � nd motifs whose occurrences contain
insertions and deletions with respect to the consensus as well as substitutions. A general extension seems
extremely dif� cult, both because random projection depends on sampling corresponding positions from
each l-mer in the input and because the probabilistic model used by re� nement only permits substitutions.
The latter problem is characteristic not only of our method but also of many other popular motif � nders.
A simpler extension that has proven more tractable in practice (Cardon and Stormo, 1992; Sinha and
Tompa, 2000; Marsan and Sagot, 2000) is to handle motifs with one or a few variable-length spacers. The
dimeric structure of many transcription factors suggests that motifs with one central spacer, as occur in,
e.g., S. cerevisiae and E. coli, are a biologically common case worth addressing in our algorithm.
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