Brian Buckley

CS 441

Homework #5

11/05/2003

Real-time system for monitoring vital signs at a patient’s bedside:
Overview:

This application consists of two parts. The first is the real-time calculation and output of vital statistics. Current heart rate, blood pressure and level of consciousness are all things that will need to be provided. These measurements will involve collecting statistics over a short period of time and outputting the information as it comes in. For example, to calculate pulse rate, one will need to count the number of beats in a given time.

But real-time statistics are of little use 10 seconds after they disappear unless there is a back-end application that collects the statistics and stores them in a database or record. Doctors are not only interested in a patient’s current heart-rate, but what the heart rate was after surgery or after eating. 

This application will need to have a large data warehouse to store the data, which is usually not a problem for hospitals. The real-time system has the potential to be fast. It does not take a hefty processor or gigabytes of hard-disk space to calculate blood pressure or display heart rate on an LED. Unlike the database, the real-time portion of the application can be fast, small and efficient.
Array: Any real-time system will need to hold data for a period of time before either discarding it or committing it to a record or set. When the data is of the same type and is processed in the same way, an array is a perfect choice.

Take, for example, the patient’s pulse rate. The number of pulse beast per minute could be stored in a queue-like array where each new second pushes out the data stored 61 seconds ago. By continually calculating beats per minute by averaging the values in the array, one could easily achieve a real-time calculation of a patient’s pulse.

Implementing arrays is very feasible. They are efficient because memory allocation is done by an optimized compiler or interpreter and the total size of the array is often set before run-time. Storage Management is usually very safe when dealing with arrays. Arrays are manipulated by indices and are usually not subject to the corruption that occurs with direct memory manipulation.

Multidimensional array: For the same reason a real-time system needs arrays, such a system might need multi-dimensional arrays. Take. For example blood pressure. Blood pressure is measured with two values, diastolic and apostolic. Just as an array that holds the single value for pulse, a multidimensional array will be needed to hold blood pressure.

Implementing a multidimensional array is also feasible. Memory allocation is done by a compiler/interpreter and access to the array is done through indices, not by directly accessing memory locations. Multidimensional arrays do consume more memory than singular arrays. Therefore, if they are not necessary, they could be avoided in favor of only using arrays, which are just as safe and consume less memory.
Records: One of the most important features in a real-time system that monitors patients’ vital signs is keeping a record of that data. Doctors are not only concerned with how a patient is doing now, by also how the patient was an hour ago, a day ago, even years ago. Keeping accurate records of a patient’s vital statistics is probably the most important part of the system.

It is a good thing records are important because they heavily consume resources. Often when querying large records, one can entirely fill a computer’s RAM, creating memory allocation errors. Records are heterogeneous, meaning they contain many different types, unlike homogeneous arrays, which drastically increases their size. Furthermore, they are more easily manipulated than arrays, creating a greater change of data corruption. Records are not very feasible data structures in terms of storage representation or storage management. However, they are so very important to vital-statistics collection, the data structure must be included.

Lists: This application does not need lists. Lists are data structures used in logic programming such as Prolog “where the elements can be atoms, atomic prepositions, or any other terms, including other lists. (635)” However, when using these types of lists or any other type of logic-programming data type, one suffers from storage representation and storage management issues. Logic-programming suffers from slow program execution because of user-defined ordering (640). The last thing acceptable in a real-time environment is slow execution time. Furthermore, with records and arrays, lists are not really needed.

Character Strings: Character strings should be supported but only when absolutely necessary. Obviously, doctors will want to know what measurements are blood pressure, which are heart rates, etc. Character strings are needed for input and output so humans can attach names to the data. Internally, their use should be limited to things such as field names for records because they consume memory.

Some character strings have pre-defined sizes. This helps storage representation because the compiler/interpreter knows exactly how much memory to allocate for a given string. The downside is that if the string is longer than the allotted length, data will be lost. Conversely, if the string is of variable length, no data will be lost, but the compiler/interpreter will have to allocate lots of room to accommodate the string because it will not know how long it is before run-time.

Pointers: Pointers are risky. Memory allocation is best done by the computer. While pointers allow for efficiency and exact allocation of memory, they have many problems. If one forgets to dereference the pointer, it can create a memory leak. Pointer arithmetic can create unexpected results. In a real-time system that measures vitals, memory will be abundant because of the need for massive record-keeping. Therefore, there is no real memory crisis and no need to use pointers.

Sets: With the proper use of sets, the cumbersome and resource-hogging records become less of a drain on the processor and memory. Take, for example, a doctor that wants to compare the pulse rates of all patients who are 50 pounds overweight, five hours after receiving a certain type of anesthesia. Instead of running queries against the entire record, it is far more feasible to create smaller data sets that only meet the specified criteria and run the comparisons against those sets.

Event-driven system for subway car control:

Overview:
Like the real-time system above, this system could have an efficient part that controls the event-driven side and a larger, slower database that holds records of the day’s transactions. However, unlike the vital statistics program, the database in this event-driven system is not mandatory. Those statistics could be collected with other applications, which means this system could be incredible efficient.
With event-driven programming, changes trigger responses and actions. I imagine this system to have a message queue, much like the message queue in the Windows API. Different messages will be passed to the message handler depending on the event. For example, if a subway car needs to go downtown, it will pass a marker, triggering an event. That event will send a message to a queue. The queue will hold the event until a response is generated, such as “Have the subway use rail X to get downtown.”

Arrays: Because the control system is event-driven, something similar to a priority queue will be needed to store the events as they come into the system and discard those events that are executed. An array would be the perfect structure to store such and event.

Storing events in array-based structures is excellent for storage management because memory allocation with arrays is concise and wastes little memory. Arrays are limited in what they can represent. Because singular arrays have one data type per allocation, not much information can be stored.

Multidimensional arrays: To overcome the storage representation challenges with singular arrays, multidimensional arrays are a reasonable alternative. Suppose, for example, as subway car needs to use Track X. A second subway car is already on Track X. In the array, one might need to store numbers representing the subway car, the start time, the end time the priority level, etc. As long as the data is homogeneous, a multidimensional array can be used to hold multiple pieces of information about one event.

 Like the singular array, the storage management is succinct due to the homogeneous nature of the data, although it does take more memory. The data is implemented in a way that gives the application more freedom to expand on total data allowed.
Records: If one absolutely needs a heterogeneous data type to hold the events, a record is one alternative. However, record management is very costly and not as stable as the arrays. There is really no good reason why such a large data type is needed to hold messages.

However, if one will need to analyze data afterward, a record is perfect. If city managers need to see which subway rails were most traveled during a given time or which cars consume the most rail, keeping records would be the way to go. However, records are costly, consume disk space and are easily manipulated and corrupted. Records can be used to hold data for future evaluation, but not to contain events.

Lists: Because this system does not implement logic-based programming, lists, atoms or other Prolog-like data types are not needed. Logic-based programming is simply too slow for this application, as explained above in the real-time vital signs section.
Character strings: If character strings can be avoided, the better. While character strings do not hog memory the way a record does, they disrupt the homogeneity of the application. If the types are all the same, such as floating-point numbers, one can implement the efficient and relatively safe array/multidimensional array types. Without homogeneity, one is forced to use a struct or similar record type that is far less efficient and not as safe.

While character strings should be avoided in terms of event handling, they are fine for long-term data collection as was discussed above in the records section. If people need to analyze the data collected, character strings are an excellent device to associate words with data to help programmers and analysts study the data.

Pointers: If the event handling is entirely based on arrays, the project could have potentially small amounts of memory needed. To best conserve memory and to specifically target elements in the array/multidimensional array, pointers can be an invaluable tool

Pointers are very efficient because they are very small and allow direct access to a memory location. But, as mentioned before, pointers are dangerous. Memory leaks, failure to dereference, lackadaisical usage and lack of garbage collection can make pointers too dangerous to use. However, careful usage and delicate understanding can greatly improve the performance and memory management in this application
Sets: Sets will not be needed unless the application has records that hold the data for future evaluation. Sets are made for heterogeneous data, and since the goal of the event-driven program is homogeneity, sets are not something we will consider. However, in terms of record-keeping, they would be important. Breaking data from a record into sets and running queries against those sets can save time, memory and headaches. 

Enrollment Management System:

Overview:

Enrollment management systems can have many different definitions. I am basing my definition from UMKC’s enrollment management system. At UMKC, enrollment management is not so much managing enrollment as it is increasing enrollment. Managing enrollment implies making sure there are adequate staff and faculty to properly serve drastic increases in students. UMKC does not do that. There are obvious student-service issues here but no money to finance the staff and faculty needed to truly provide outstanding customer service.

Enrollment management is handed, in large, by people with advanced education degrees with little to no math background besides elementary algebra and statistics. Similarly, those in charge of enrollment management often lack computer science skills outside understanding the basic Microsoft Office package. While there are exceptions, including database administrators, network specialists and ex-computer science professors now working in the Provost’s Office, the number of Education Specialist degrees far outnumbers the amount of computer science degrees. This application must be tailored to accommodate people with poor understanding of computers and application development.
Any enrollment management package must tailor to people who have a career in education, people who know about curriculum, course offerings and alumni relations but not much about data manipulation, pointer dereferencing and advanced mathematics. This type of environment, as is evident at UMKC, will have massive servers that hold gigs of data and relatively up-to-date computers with processors capable of handling heavy loads.

Arrays: The application could use arrays to hold internal data that is not immediately visible to the user. For example, an array could hold the number of times potential students use the online application for admission in each of the fifty states. Arrays are efficient, small and not easily corruptible. However, storage and efficiency are not as important in this application as usability. Arrays should be used in the back-end, but not immediately accessible to the user.
Multidimensional arrays: Just as the application should avoid front-end arrays, it should similarly avoid front-end multidimensional arrays. Again, arrays are efficient and robust, but the homogeneous nature is not conductive to this application’s goal of user friendliness. Users will not want to conform to using a single data type. Neither will they appreciate the efficient nature of homogeneous data. They will want to use character strings, floating point numbers, integers and whatever else indiscriminately. For this reason, homogeneity should be avoided on the front end.

Records: Records are excellent because of their allowance for variation. Users will undoubtedly enter data in terms of characters, numbers and a combination of the two. Records are designed to hold this type of data. Furthermore, because users will often be using applications similar to Microsoft’s Access and Excel, the data will already be arranged in rows and columns, making importation into records even easier.
Another benefit of records is the University’s amazingly high number of COBOL and Oracle programmers. Records and sets (below) are very intuitive to the staff. Querying, manipulating and exporting these records are easy, especially to a staff that has been doing these types of operations for decades.

Records, as I have stated twice already are not nearly as memory efficient as arrays and do not have the data integrity that arrays to. But this project is not about being efficient. There are hundreds of gigs of storage room on University servers and every desktop has processors that clock well over 1 GHz. Records are feasible because there are ample resources to handle the increased load.

Lists: While this application does not have logic-programming, it could use a list-like data type. Lists are very intuitive. “Lists are sequences of elements, (635)” meaning they can contain many different types. Consider a list drawn by a recruiter who has made new contacts at some local high schools:
new_contacts (NKC, Central, Hickman Mills)

That is far more intuitive than plugging away at an Access database. The list can be interpreted by a computer and put into the correct record or set by a back-end application. 

Lists are very expensive because of pattern matching, slow program execution, the negation problem and the myriad other reasons people rarely implement logic-programming. However, a simple implementation of lists would serve the user very well and help those with little computer knowledge more efficiently populate fields in a record or database. And, once again, the disk space and processor capabilities in a university setting are plentiful and can overcome the slow, cumbersome process of list computation.
Character Strings: Character strings are very important. Users do not understand hash tables, enumerations and the other mechanisms of using number values to represent words. Users who want to type the word “English” have little patience for looking up “2110” in a table of curriculum codes. Once again, character strings are not as efficient as integer representation. However, the difference is minimal, usually measured in bytes. Furthermore, the propensity for error greatly increases when users have to substitute numeric values for literal strings.
Furthermore, this application has never assumed homogeneity. It is record-based and built to accompany a variety of data types. Because character strings are so intuitive and so easily written, the application must accommodate character strings in almost every facet. The character strings should be of variable length. Many times, data has been lost because one limits the character strings to a maximum value. Take, for example, on an Access database, the “Text” type has a maximum value of 255 characters whereas the “Memo” value has no maximum. Often, data has been lost by mistakenly importing a large number of strings into set-maximum “Text” field.

Pointers: Absolutely no pointers. There is no need for pointers. It was decided on the outset that storage and processor time was not a big issue. The only justifiable use of pointers is when memory and processor time is of the essence. Pointers are just too dangerous. Even C#, which resurrected the pointer, forces users to use the “unsafe” modifier when using pointers. (279) Pointers are simply too risky for an application designed for people who lack computer skills.

Sets: Sets will be essential to this program. Sets are more efficient that records. Instead of querying entire records, one can break the records into sets and more easily and efficiently run set operations (union, minus, intersect, etc) on those sets to get the desired results. While speed and efficiency are only secondary concerns in this application, any bonus to speed and efficiency are appreciated, especially when they do not corrupt the data. 
