CS441 – Programming Languages:

Design and Implementation

Group Members:

Brian Buckley

Ryan Johnson

Prasad Natoo

Lisa Presson

Language: Pascal
Language Family: Block Structured, Procedural
Comparison with: Modula-2

1. History

In the mid 1960s, the Algol Working Group was working on a proposal to extend Algol 60 and create a better overall language. Nicklaus Wirth, a Swiss professor, had a brilliant idea. However, his idea was shunned in favor of a more complex proposal. This proposal led to Algol 68, which was a massive failure. Undaunted, Wirth took his ideas and developed a revolutionary new language designed to be a successor to Algol. Dynamic data structures that can grow and shrink during runtime and the ability to define new data types distinguished Wirth’s new language from other successors to Algol. Wirth named his new language Pascal, after the 17th-century French philosopher, Blaise Pascal, who built a working, mechanical digital computer.

Pascal did what no other language had done before. With the Swiss Federal Institute of Technology, Wirth developed a compiler that brushed aside the need for native code that runs on a particular machine in favor of a simple, general code for a virtual machine. They called this the P-code interpreter. Only a new P-code interpreter would need to be written in order to provide portability to different computer architectures instead of having to write an entirely separate compiler.

Pascal became a standard language used at universities because of the incredibly portable Pascal compiler. Prof. Wirth compiled his Pascal compiler to an “intermediate, platform-independent object code stage.” The intermediate code was turned into executable. This allowed massive migration to the personal computer. Prof. Ken Bowles at the University of California at San Diego then adapted the Pascal compiler to the Apple II. This was known as the UCSD P-System. This became a standard because of the low costs of the Apple IIs compared to the cost of mainframes.

Pascal became even more widely accepted when it was selected by the Educational Testing Service to be added to the Computer Science portion of the Advanced Placement exams for high school students. Pascal was the official language of the Advanced Placement exams from the 1980s until 1999.

The Turbo Pascal compiler was also developed by Borland International for the IBM personal computer. This increased the speed of Pascal. Turbo Pascal compiled several thousand lines a minute. When the Macintosh computer was developed by Apple, it also used Pascal as the standard programming language.

The Pascal programming language was expanded even further by Prof. Wirth with the development of the language Modula-2, which dealt with compilation of modules separately. Borland even created Turbo Pascal for Windows so that the speed and ease of Pascal could be used with a graphical user interface.

The end of Pascal’s popularity came with the rise of popularity in object-oriented languages. Eventually, more universities started selecting C and then C++ for their programming courses, and now even Java. When the Educational Testing Service began to use C++ for the Advanced Placements exams, Pascal even lost its dominance in high schools.

2. Overview of Language

Pascal contains some significant language features that allow it to used as a powerful learning tool in introducing structured programming techniques:

· Built in Data Types- Pascal contains it's own built in data types of Integer, Real, Character, and Boolean.

· User defined Data Types - Has the ability to define scalar types as well as sub-ranges of those data types.

· Provides a defined set of Data Structures- These data structures include Arrays, Records, Files and Sets.

· Has a strong data typing element - Pascal compliers can diagnose an incompatible assignment of one type to a variable to another type.

· Supports Structured Programming - This is accomplished through the use of subprograms called procedures and functions.

· Simplicity and Expressivity - Because the language is simple and expressive in nature it allows for effective teaching of computer programming techniques.

The Prime area of application that Pascal entails is the learning environment. This language was not really developed to be used for anything other than teaching students the basics of programming, after all it was originally developed for this purpose. In the early 1970's to the early 1990's Pascal was the language of choice for most major colleges and universities for teaching college level programming techniques. Now with the growing popularity of Object Orient Programming Pascal has taken a back seat to other languages such as C++ and Visual Basic.

3. Handling of Data Objects

Because Pascal is not an object-oriented language, it does not have any data objects. Instead, Pascal relies on the traditional types to handle data and information. Real, character, Boolean and integer are its most basic elements, and various dialects of Pascal expand on these basic types. Pascal also offers the set data type and enumerated data types with support for subranges. Arrays and multidimensional arrays can be used to hold multiple instances of the same data type and records offer a way to hold multiple instances of different data types. Pascal supports pointers, which reference memory rather than the value in the memory. The following are more detailed explanations of how Pascal handles data with these different types and data structures.

Real Data Type:

The real data type is similar to the C-languages’ float type. Many Pascal dialects have several real types including real, single, shortreal, double and longreal. The real, single, and shortreal types are 32-bit floating-point numbers that have values ranging from 3.402823e-38 to 3.402823e+38. The double and longreal data types are 64-bit floating-point numbers with values ranging from 4.94065645841246544e-324 to 1.79769313486231470e+308. The following code initializes a shortreal and longreal and sets the values:

var
sr: shortreal;

lr: longreal;

sr:=3.14e-30

lr:=3.14e+300

Integer data type:

Pascal supports the integer data type, many extensions to the standard support integer16, integer32 and integers in number systems not in base 10. The 16-bit integers support numbers from -32,768 to 32.767 while the 32-bit integers support values from -2,147,483,648 to 2,147,483,647. The following code initializes two integers, one in hexadecimal base

var

int1:integer;

hexInt:integer;

int1:=1234;

hexInt := +16#FFD9; {base sixteen declared before pound-sign}

Boolean type:

The Boolean type is either true or false. Pascal allocates one byte for each Boolean variable. The following statement declares a Boolean type and initializes it in the same line:

var

BrianIsAwesome: Boolean := true;

Character Variables:

Pascal supports the standard data type char. Each char is one byte. Some nonstandard versions of Pascal support character constants such as “bell,” equal to char(7), which makes the terminal beep. Characters are declared and given a value as below

var

myChar:char;

myChar := ‘M’;

Enumerated data types:

Pascal supports enumerated data types by assigning number values, actually binary values, to each enumerated type. This allows the programmer to assign meaningful names for data. Each enumeration is one byte. An enumerated data type is shown below with the assigned binary value in the comment

type

students = (
Bob, {00000000}

Mary, {00000001}

Jane, {00000010}

Joe {00000011}

);

var

someStudents: students;

Subranges:

Enumerated data types can yield subranges, which are segments of a larger type. For example, if an enumerated data type listed every month of the year, but a program only needed to know the months in summer, one could form a subrange of that larger type.

The syntax is thisSubRange = lowest_vale .. highest_value. Where lowest_value is less than highest_value and both are in the same enumerated data type.

type

Months = (January, February, March, April,

May, June, July, August,

September, October, November, December);

summerMonths = June..September;

Arrays:

Pascal supports arrays of fixed length. Most versions of Pascal also support variable-length arrays, although there is always a cap as to how long the array can be. Pascal allows the user to decide which index values to use. For example, both of the arrays below are of size 25, but the second has index values from 76 to 100:

var

arr1: array [1..25] of char; {String of 25 characters}

arr2: array [76..100] of char; {Also a string of 25 characters}

Some Pascal variations support predetermined array constants such as:

var

constantArray: string; {string initializes to a character string of size 10}

Note that the usual syntax for array declaration is

array[size] of data type;

The programmer may also supply the initial values to an array at the time of declaration. When doing this, one may substitute the maximum array value with an asterisk, which allows the compiler to determine the upper bound.

var

arr1: array[1..10] of char := ‘abcde’ {upper bound is 10}

arr2: array[1..*] of char := ‘abcde’
{compiler decides upper bound}

Multidimensional arrays:

Arrays can have many dimensions. The syntax is the same, except there is a comma separating the different array lengths within the size specification. The example below shows how to declare a two-dimensional array of characters, which each dimension having a size of 5:

var

arr1: array[1..5,1..5] of char

Sets:

Pascal also supports sets, which it implements as bit vectors, one bit representing each element of a set. Sets are allowed in multiples of 16 bits. Size is determined by taking the maximum size, adding one and finding the next highest multiple of 16. Therefore any of values from 1-15 would require 16-bits. A set of 1-16 would require 32-bits because the maximum element is size 16. 16+1=17. The next highest multiple of 16 given 17 is 32.

Sets are declared as follows:

type

mySet = set of char; {declares mySet to be a set of type char}

var

thisSet := mySet; {thisSet is an instance of mySet which is a set of chars}

Records:

Records in Pascal are similar to the struct in the C-based languages. Records contain many different data types in one unit. The following example creates and initializes a record:

type

thisRecord= record

thischar: char;

thisint: integer;

thisarray: array [1..10] of char

end;

var

rec1:thisRecord :=

thisChar := ‘A’

thisInt := ‘10’

thisarray := ‘myarray’;

Records are managed by memory in two different ways depending on the version of Pascal. With fixed records, the size of the record is a multiple of the largest element, and each element has a separate spot in memory the size of the largest element. This often allows an abundance of unused space. Some Pascal versions support packed records, which try to make use out of unused blank space. If the largest element in the record is 32-bits, but the record also contains three 8-bit elements, it will place the largest element in a 32-bit field. It will then make as many 32-bit fields as necessary, but will cram each 8-bit field next to each other to conserve the space.

Pointers:

Pascal supports pointers. Pointers reference an address in memory. Pointers may be initialized to “NIL” or addr(x), where x is a variable, procedure, string or another previously declared pointer type. One declares a pointer of a given type the same way as declaring a type variable, but with a preceding up-carrot. The following code declares two pointers. The first leaves out a memory address and the second initializes it.

var

Ptr1: ^ realshort;

Prt2: ^char :=addr (r);

4. Control Sequence

The basic control sequence in Pascal is very simple. The computer executes each statement and goes on to the next statement until it sees an end. Programs are organized in blocks. The first block is constant declarations, the second type declarations, the third variable declarations and the fourth is executable statements. The following is a Pascal program that does nothing, but contains all required elements:

program DoNothing;

begin

end.

Pascal is a block-structured language because the program declarations are defined in individual segmented parts. Together, these parts make a whole program, much as individual blocks can construct a whole building. The main program declarations in Pascal are as follows:

Label: This part defines the labels as used in goto statements

Constant: Any values defined in the constant declaration do not change during program execution

Type: These define types used in variable, parameter and function declarations

Variable: These are variables used in the program. These values may change during program execution

Exectution: any statements between the begin..end. tags are executed by the computer. The definition block heading “Execution” is not used

The following program illustrates the use of blocks and straightforward execution:

program ArithFunc;

 const

 Sentinel =0.0;

 var

 X:Real;

begin

 writeln('After each line enter a real number or 0.0 to stop');

 writeln;

 writeln('X', 'Trunc(x)' :16, 'Round(X)' :10, 'Abs(X)' :10,

 'Sqr(X)' :10, 'Sqrt(Abs(X))' :15);

 readln (X);

 while X <> Sentinel do

 begin

 writeln (Trunc(X) :17, Round(X) :10, Abs(X) :10:2,

 Sqr(x) :10:2, Sqrt(Abs(X)) :10:2);

 readln(X);

 end

end.

(this program was taken from the site: http://www.engin.umd.umich.edu/CIS/course.des/cis400/pascal/arithmetic.html)

Notice how the blocks define the program. The constants are defined in one section and the variables in another. The keywords begin and end. (with a period) define the executable portion of the program. The code is executed line-by-line in exact order. Notice, however, the while loop does interrupt the line-by-line structure of the program by looping the program to execute a couple lines of code over and over again until the Sentinel expression is evaluated to be equal to x.

The while clause above is a loop, which is one of the two primary ways to interrupt sequential control. Loops will carry out a series of executable statements until a terminating condition is met. In the example above, the while loop continued until the variable “Sentinel” was equal to zero. This type of loop is called a pretest loop. A test is conducted before the statements execute. If the test results in the terminating condition, the statements are not executed.

Posttest loops execute and then check the condition to determine if the loop should iterate again or stop. These types of loops are useful if one wants the loop to execute once no matter what. In Pascal, the posttest loop is called the “repeat..until” loop, and the syntax is as follows:

Repeat

executableStatement1;

executableStatement2;

…

executableStatementLast;

until BooleanExpression;
The final type of loop is the fixed-repetition loop, which repeats a predetermined number of times. This type of loop is valuable when the programmer knows exactly how many times a loop is to execute. The programmer determines a starting value and an ending value. The current value begins as the starting value. Each time the loop executes the current value increases by one. When the current value reaches or exceeds the ending value, the loop stops. In Pascal, this loop is called the “for loop” or the “for-to-do loop.” See below for an example:

sum:=0;

for count := 1 to 100 do {the loop will execute 100 times}

sum := sum+count;

In order to count down instead of count up, the syntax is similar, except the “to” is replaced by “downto”

sum:= 100;

for count := 100 downto 1 do

sum:=sum-count;

As mentioned above, looping is only one way to interrupt sequential control flow. Branching is another popular method. Branching is simply choosing to execute a statement that is not (necessarily) in sequential order. Branching is often done based on conditions. If a condition is met, branch here, if not, branch somewhere else. One of the most popular branching methods is the “if..then” statement. A Boolean value follows the “if.” If the Boolean value is true, the statement following “then” is executed. Otherwise, the statements are not executed. Consider the following example

If BooleanExpression then

Begin

Statement1;

Statement2;

End

someOtherStatement.

If BooleanExpression is true, the statements between the begin and end tags are executed. Otherwise, the program branches immediately to someOtherStatement. Sometimes, a programmer wants to express multiple if statements. For example, if a number evaluates to 1,2,3,4 or 5 do statementX, otherwise, do statementY. In such a circumstance, instead of using multiple if..then loops, one may use a case statement (very similar to the switch statement in C-based languages). The case statement appears as follows:

Case b of

1,2,3,4,5: statementX;

otherwise statementY

end;

Various dialects of Pascal include other control statements that manipulate the otherwise sequential flow. The exit and next statements transfer program control from within loops. The exit statement will immediately break out of a loop, even if the stop condition is not meant in the pre/posttest loops or if the number of prearranged iterations is not meant in a fixed-repetition loop. The next statement will skip one loop iteration and go to the next one. The return is similar to the exit function except that return will prematurely end a procedure or function.

Assert is control statement similar to the if..then statement. Asserts are used to induce run-time errors when certain preconditions are evaluated to false. For example, if a programmer knows that a variable must be true in order for the program to run correctly, the programmer may choose to assert an error if the variable is false.

A unique branching technique is to use the goto statement. These statements direct the execution of a code directly to a specific spot. This is similar to the jump or j instruction in many assembly languages. A specific block before the const block called label must be initialized. In that block, one can define any amount of labels. The label can precede any line of code in the begin..end block of the program. A goto statement will jump directly to that label. See the code below for a specific example:

program goto_example;

{ This program uses an identifier as a target

 of a goto statement. }

label

 skip_subtotal;

const

 MAX_STUDENTS = 100;

var

 i: integer;

 grades: array [1..MAX_STUDENTS] of char;

 num: 1..MAX_STUDENTS;

 sum: real;

 points: real;

begin

 { Read in number of students and their grades. }

 write('Enter number of students: ');

 readln(num);

 assert((num > 0) and (num < MAX_STUDENTS));

 for i := 1 to num do begin

 write('Enter grade for student ', i: 3, ': ');

 readln(grades[i])

 end;

 writeln;

 { Now calculate the average GPA for all students. }

 sum := 0;

 for i := 1 to num do begin

 if grades[i] = 'I' then begin

 goto skip_subtotal

 end else begin

 case grades[i] of

 'A': points := 4.0;

 'B': points := 3.0;

 'C': points := 2.0;

 'D': points := 1.0;

 'F': points := 0.0;

otherwise

 writeln('Unknown grade: ', grades[i]);

 points := 0.0

 end

 end;

 sum := sum + points;

 skip_subtotal:

 end;

 writeln('GPA for all students is ', sum / num: 6: 2, '.')

end. { goto_example }

taken from the site: (http://www.ictp.trieste.it/~manuals/programming/sun/pascal/lang_ref/ref_state.doc.html#226)

Comparison between Modula-2 and Pascal:

Modula-2 and Pascal were both invented by Niklaus Wirth. It was designed to immediately appeal to Pascal programmers and in many ways mimics the language. For that reason, the basic data types are almost identical to those found in Pascal. Most of the differences between the data types are more lexical than semantic. For example, Modula-2 is case sensitive, whereas Pascal is not. Modula demands that REPEAT..UNTIL be in all CAPS, whereas Pascal does not demand any case-sensitivity. Other lexical differences include the bitwise or symbol | to separate cases in a CASE statement, the word END as a terminal of most loops and the if..then control statement.

Data types:

Data types remain largely the same. Modula-2 supports CHAR, INTEGER, REAL, and BOOLEAN but also includes two new data types, CARDINAL and BITSET. A CARDINAL is simply and unsigned integer and a BITSET is a set of small cardinals. Just as some non-standard dialects of Pascal use the longreal and shortreal types, Modula-2 has the SHORTCARD and LONGCARD data types to accompany the new CARDINAL. Modula-2 supports pointers, but instead of the ^ symbol it allows pointer declaration with the words POINTER TO as in the example:

VAR p: POINTER TO REAL

SETS and RECORDS are also identical to Pascal, except that if one omits the type in the syntax SET OF TYPE, the default is the new data type BITSET.

Also, to increase functionality, Modula-2 includes a module (more about modules later) called SYSTEM that allows exportation of BYTE, WORD, ADDRESS and LONGWORD. However, these are not standard, not portable and only used when writing low-level driver software. They are usually shunned, but available in the right circumstances.

Control Flow:

The control flow of Modula-2 is almost identical to Pascal. The VAR, CONST, TYPE blocks are still included. However, one is free to use these program definitions anywhere, even multiple times. Therefore, a programmer may write:

VAR

…

TYPE

…

VAR

…

CONST

…

VAR

…

whereas in Pascal, especially in standard versions, that type of repetitious definition structure was prohibited. Also, unlike in Pascal, there is no goto statement in Modula-2; therefore, there is no LABEL definition structure.

Loops are also very similar. The REPEAT-UNTIL loop is identical to the same in Pascal. The WHILE-DO loop is identical except that it terminates with END. The FOR loop also terminates with END, but includes an BY expression which allows increments greater or less than one. Modula-2 introduces a new loop called LOOP that is designed to be an endless loop. The only way to exit one of these loops is with the EXIT statement. See the code below for an example of the Modula-2 LOOP:

LOOP

IF blah = blahblah THEN

EXIT

END

Blah=blah+1;

END

Also different from Pascal, the EXIT statement is exclusive to LOOP and does not work with FOR, WHILE-DO and REPEAT-UNTIL

Most of these differences are minor. The main difference between Modula-2 and Pascal is in Modula-2’s implementation of modules. Modula-2 interrupt the sequential flow of execution by using block structures, called modules, that have unique initializations, unique declarations and unique definitions, but assist other modules or procedures by breaking code in to meaningful, reusable parts.

Modula-2 is not an object-oriented language (its successor, Modula-3 is object-oriented). Some describe Modula-2 as “object-based” because it supports encapsulation and data-hiding. However, it lacks support for inheritance and polymorphism, so it is not an object-oriented language. At best, it mimics the techniques used in object-oriented programming to empower some of the deficiencies in Pascal. The genius behind Modula-2 is that it uses the traditional block-structured programming to implement reusable, importable modules that allow many users to contribute to a single project.

5. Handling of subprograms and storage management

Subprograms of Pascal

In the Pascal language subprograms are called procedures. Essentially, procedures are self-contained "mini- programs" which communicate with the main program and do specific tasks during the execution of the program. In doing so, the main program, when it calls a procedure, sends data to the procedure (= "passes information", if any is needed) and the procedure reports back any answers it has found to the calling program (if indeed any were found). However, Pascal does have a major drawback when it comes to subprograms. The main drawback of the Pascal language is that it is impossible to write a subprogram that takes an array of variable length as a parameter.

This shows how procedures are defined and where they are defined in the program:

Program Prog_name;

Uses

 ..

Const

 <any global constants are declared here>

Var

 <any global storage locations are declared here>

.

.

Procedure definitions are placed here
.

.

Begin {MAIN}

 .

 .

 Procedures are called by name here in main line code
 .

End.

Example:

Procedure Print_Line(Symbol: Char; Len: Integer);

Var

 LCV: Integer; {local loop control variable}

Begin

 For LCV:= 1 to Len Do

 Write(Symbol);

 Writeln;

End;{Procedure Print_Line}

The name of the procedure is Print_Line. The list of identifiers inside the parentheses after the procedure name is called the formal parameter list and the individual identifiers are called formal parameters. They indicate the values being passed to the procedure for its use. At the time the procedure runs, storage will be assigned by Pascal using the names of the identifiers in the formal parameter list, and these storage locations will be typed as declared in the parameter list. Sometimes the formal parameter list is called the "communication section" of the procedure. The procedure is called by name in the calling program; we also say the procedure is invoked in the calling program. To invoke a procedure, we use its name exactly as it appears in its definition, and we are required to list in the calling statement storage locations of the same kind and in the same order as those in the procedure definition.

Storage Management in Pascal

The Pascal language has no storage class. This means that if a Pascal function or procedure intends to remember a value from one call to another, the variable used must be external to the function or procedure. Thus it must be visible to other procedures, and its name must be unique in the larger scope. A simple example of the problem is a random number generator: the value used to compute the current output must be saved to compute the next one, so it must be stored in a variable whose lifetime includes all calls of the random number generator. In practice, this is typically the outermost block of the program. Thus the declaration of such a variable is far removed from the place where it is actually used. Also, the Pascal provides no way to initialize variables statically (i.e., at compile time) creating a major storage problem. Furthermore, the lack of initializers exacerbates the problem of too- large scope caused by the lack of a static storage class. The time to initialize things is at the beginning, so either the main routine itself begins with a lot of initialization code, or it calls one or more routines to do the initializations. In either case, variables to be initialized must be visible, which means in effect at the highest level of the hierarchy. The result is that any variable that is to be initialized has global scope.

Example:

program formatter (...);

 var

 dir : 0..1;’
 { direction to add extra spaces }

 .

 .

 .

 procedure justify (...);

 begin

 dir := 1 - dir; { opposite direction from last time }

 ...

 end;

 ...

 begin { main routine of formatter }

 dir := 0;

 ...

 end;

 main()

 {

 ...

 }

 ...

 justify()

 {

 static int dir = 0;

 dir = 1 - dir;

 ...

 }

Modula-2

Pascal was designed by N. Wirth, to be a language for teaching structured programming; however, several implementations (e.g. Turbo Pascal) have incorporated extensions in Pascal in order to try to turn it into a "production language", something is was NOT intended to be! Modula-2, however, is the language that Wirth designed as a production language (specifically for systems programming). Modula-2 corrects some of the deficiencies of Pascal. It is suitable for learning programming, for large projects written and maintained in the fashion of professional software engineers, and for real time embedded systems.

The central concept of Modula-2 is the module, which may be used to encapsulate a set of related subprograms and data structures, and restrict their visibility from other portions of the program. The module design implemented the data abstraction feature of Modula-2 in a very clean way. Modula-2 programs are composed of modules, each of which is made up of two parts: a definition module, the interface portion, which contains only those parts of the subsystem that are visible to other modules, and an implementation module, which contains the working code that is internal to the module.
Subprograms of Modula-2

Unlike Pascal, functions and procedures are not distinguished by keywords; both functions and procedures are declared using the keyword PROCEDURE. However, in every other respect their syntax is the same as those in Pascal.

Functional procedures return a single result of type REAL, INTEGER, BOOLEAN, CHAR or enumeration vial a explicit RETURN <identifier name>. They have the syntax:

PROCEDURE <name> (<formal parameter list>) : <type>;

<local variable declarations>
BEGIN

<statements>

RETURN <identifier name>
END <name>

Nonfunctional procedures either perform a task without output or pass their results pass their to the calling statement via "varying parameters" which are identified, like in Pascal, with a preceding VAR keywords. Their bodies include, instead of a RETURN statement, assignment of results to each varying parameter. They have the syntax:

PROCEDURE <name> (<value parameter list> VAR <varying parameter list>);

<local variable declarations>
BEGIN

<statements>
RETURN
END <name>

Note that they syntax of procedures and functions differ from Pascal only in that, in Pascal: keywords can be any case, functions are preceded by the keyword function, there is no RETURN statement.

Storage Management in Modula-2

Modula-2 has a major advantage when it comes to storage management over Pascal. The exported procedures ALLOCATE and DEALLOCATE serve to obtain and return storage space for dynamically allocated variables. The allocated space is identified by a pointer p; its size in terms of storage units is specified by the parameter size.

Assuming the declarations

TYPE T = ….;

VAR p: POINTER TO T;

The statements NEW(p) and DISPOSE(p) are translated by the compiler into

ALLOCATE (p, TSIZE (T)) and

DEALLOCATE (p, TSIZE(T))

Therefore, whenever NEW or DISPOSE occur in a program, procedures ALLOCATE and DEALLOCATE must either be imported or explicitly declared. Usually, they will be imported from the standard module Storage; however, it is also possible to import them from another module supplied by the programmer.

DEFINITION MODULE Storage;

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED ALLOCATE, DEALLOCATE, SetMode;

PROCEDURE ALLOCATE (VAR p: ADDRESS; size: CARDINAL);

PROCEDURE DEALLOCATE (VAR p: ADDRESS; size: CARDINAL);

PROCEDURE SetMode (m: CARDINAL);

(* m= 1: ALLOCATE aborts when not enough free space (default)

 2: ALLOCATE gives NIL when not enough free space *)

END Storage.

Modula-2 corrects some of the deficiencies of Pascal. It is suitable for learning programming, for large projects written and maintained in the fashion of professional software engineers, and for real time embedded systems.
6. Handling of abstraction and encapsulation

Abstraction is used by Pascal to separate implementation through specification. Pascal handles abstraction and encapsulation through the use of subprograms (specifically using procedures and functions). Procedures are used to perform many tasks for the main program. Since abstraction is used, the main program does not contain the details of the tasks. This also significantly reduces redundancy in a program. Top-down design is facilitated through subprograms.

Following is an example of abstraction using steps for attending work:

1. Get ready for work.

2.
Drive to work.

3.
Attend work.

A program in Pascal would just use procedures or functions to call for these tasks to be performed in a program. If all of the details were included in a main program for a user to see, it would look more like the following:

1.
Get ready for work.

a.
Wake up in the morning.

b.
Turn off alarm.

c.
Take shower.

d.
Brush teeth.

e.
Get dressed for work.

2.
Drive to work.

a.
Walk to car.

b.
Get inside car.

c.
Start car.

d.
Back car out of driveway.

e.
Drive route to work.

f.
Pull car into work garage.

g.
Park car.

. . .

As you can see, by refining the steps for attending work, there are numerous abstractions. Pascal uses abstractions so the language can be a more structured and powerful language. Abstraction of some of the details may help avoid a lot of unnecessary confusion to the user of a program.

The details for refining tasks may be encapsulated into functions or procedures. The data structures and actions are protected by encapsulation. The user will provide the arguments and will receive the result(s). The basic format for procedures and functions in Pascal is fairly simple.

Procedure Format:

procedure Name (<parameter list>)

<local variable declarations>

begin

<statements>

end;

Function Format:

function Name (<parameter list>) : <return type>

<local variable declarations>

begin

<statements>

end;
To implement procedures and functions, the procedure or function is called from the main program, is executed from the subprogram, and control is then returned to the main program.

Parameters can be passed to the procedures. They are implemented by varying parameters or value parameters. Varying parameters are implemented through abstractions for input/output and output only. Value parameters are passed for input only.

Modula-2 handles abstraction and encapsulation in much the same way as Pascal does; however, modules are used instead of programs. Modules are an improvement to the use of programs in Pascal. They are a key feature to the Modula-2 language. Modules are divided into two parts: definition and implementation. Functions and procedures in Modula-2 use keywords. Declarations for both functions and procedures use the keyword PROCEDURE. Pascal does not use program keywords. The keywords that are used in Pascal can be in either uppercase or lowercase. In Modula-2, the keywords must be in uppercase. RETURN statements are also required in Modula-2 procedures and functions, whereas, Pascal does not use the RETURN statement. Modula-2 also calls the procedure name after the final END statement. Following are examples of procedures using Modula-2.

Nonfunction Procedure Format:

PROCEDURE Name (<parameter list>)

<local variable declarations>

BEGIN

<statements>

RETURN

END Name;

Functional Procedure Format:

PROCEDURE Name (<parameter list>) : <return type>

<local variable declarations>

BEGIN

<statements>

RETURN

END Name;

Pascal and Modula-2 are very similar in how they handle abstraction and encapsulation. Their syntax is essentially the same. The differences between the two are minimal.

References

1. http://math.uww.edu/
2. http://web.mit.edu/taoyue/www/tutorials/pascal/contents.html
3. http://www.en2.wikipedia.org
4. http://www.engin.umd.umich.edu/CIS/course.des/cis400/pascal/pascal.html
5. http://www.fh-jena.de/~kleine/history
6. http://www.frostburg.edu/dept/cosc/htracy/cosc450/MODULES/PasM2Ada.htm.

7. http://www.geocities.com/SiliconValley/Park/3230/pas/pasles00.html
8. http://www.ictp.trieste.it/~manuals/programming/sun/pascal/lang_ref/index.html
9. http://www.ing.unp.edu.ar/asignaturas/ldp/Modula2.pdf

10. http://www.modula2.org/
11. http://www.oberon.ch/resources/component_pascal/history.html
12. http://www.threedee.com/jcm
PAGE
2

