CS441 – Programming Languages:

Design and Implementation

Project 2
Group Members:

Brian Buckley

Ryan Johnson

Prasad Natoo

Lisa Presson
Simple Procedural vs. Block Structured, Procedural

History
Simple procedural languages were the first set of languages designed to allow programming at a higher level of abstraction than that of assembly languages. They were a step up from assembly languages. Simple Procedural languages were designed specifically for a certain type/form of hardware, which it was destined to operate on. The basic usage of Simple procedural languages was for numeric and mathematical computations; for example floating point arithmetic. FORTRAN was the first simple procedural language to be developed way back in 1957. Other simple procedural languages followed; one of them was widely used in academia, it was called BASIC. ALGOL was another one of these languages that followed. These languages were considered Imperative languages (the other form is declarative type), which are designed for sequential execution, in other words, these early languages did not possess any form of parallel computation.

Moving on, Block structured, procedural languages were a protraction of simple procedural languages [mentioned in the above paragraph]. Both Block structured and Simple procedural languages were used in academia. The birth of programming language Pascal was very significant step for the lineage of block structured procedural languages. Pascal was created by Nicklaus Wirth in 1971. Pascal was the product of Wirth’s ability to coalesce powerful tools from existing languages. It was mostly based off of ALGOL 60. Pascal’s advent led to the basic programming skills to be taught to students in class rooms; this also allowed for the efficient use on most computers. Pascal’s block structure was self-evident and it was able to utilize sub-programs. Sub-programs permitted code written in Pascal to be compile and run in a non-linearly. There are many peculiarities in the eventual creation and usage of these two language types. Simple procedural languages materialized when computers were not terribly reliable. During that time, simple procedural languages enabled the generation of efficient code for computations. Block structured, procedural languages were designed for readability and user flexibility and still be powerful but not the best run-time performance.

Overview
Simple procedural languages were/are used for scientific purposes. Languages in this application area are required to handle complex mathematical functions. Simple procedural languages offer efficient compilers to accomplish this task. The structure of the languages is pretty simple. A good example would be that of FORTRAN, which doesn’t allow new variables or space during run time. This feature is tantamount to programs running faster. FORTRAN provides a host of mathematical and scientific applications, which are very useful in the fields of engineering, computer science and mathematical orientated fields.

Block structured programming languages emphasize reliability of algorithms and a corroborative code structure. The design of block structured programming languages make it relatively easy for it to be taught in classrooms as introductory programming courses. Logic follows that languages such as Pascal and even Modula have used in the area of teaching computer science and programming. Two decades ago, Pascal was the preferred choice in academia. Another area of use is business software applications because of features of readability and program verification. Compared to Block Structured Simple Procedural Languages are faster and good for computations making them good for scientific applications.

Data Objects

Simple procedural and block-structured procedural languages handle data in similar ways. Both break data into very small units with an emphasis on efficient storage. In simple, procedural languages such as the assembly languages, data can be stored directly into registers. It is the responsibility of the programmer to account for overflow, addressing boundaries and word length. Not all simple procedural languages demand this type of storage allocation. Many simple, procedural languages rely on simple data types such as bool, char, integer, float and often array.

Block-structured procedural languages also rely on simple data types. In fact, there is almost no difference between the data types in Modula-2, Pascal and C. What the block structure does provide is an extra level of abstraction that the non-block structured counterparts do not provide. For example, in Pascal, all constants, variables and types are declared in a block before the procedure that executes the program. Variables can be assigned a value inside the block or inside the program. Having a separate part of the program where variables, types and constants are initialized makes programs more readable, more easily rewritable and easier to code.

In summary, there is little difference between the data types in block-structured, and non-block structured procedural languages. Some non-block structured languages, such as assembly, allow for direct access to the CPU’s registers, but that is not a universal characteristic of such languages. Block structured languages are arranged in blocks where data is declared, initialized and/or assigned a value, which makes the program easier to read, easier to debug and helps organize the overall structure of the program.

Sequence Control

Sequence control between simple and block structured procedural languages are both very similar. For both, the lines of code are executed line-by-line, from the top down. Both offer ways of breaking the sequential flow through goto statements, conditionals, loops, switches (case statements), and/or jumps. The main idea is the exact same: the program executes each line, in order, unless a special technique is used to interrupt the flow.

Block-structured, procedural programs have a more orderly way of breaking the sequence control when the compiler/interpreter/assembler looks for variables, constants and types. In a non-block structured language, one might declare a variable anywhere in the code. In a block-structured program such as Pascal, variables are declared in a block called var. When either the computer or a programmer needs to find the initial declaration of the variable, traversing the entire source code is not necessary, because it must be declared in the var section. While this is a subtle difference, it enhances readability, writability, and helps structure the program.

Handling of subprograms

Simple procedural languages and block structured languages handle subprograms similarly. They both execute subprograms in a line-by-line manner and have calls to functions or subprograms. Both pass parameters by value or reference. The difference between the two styles is that block structured languages have subprogram branching and where the block subprogram’s have no parameters. Simple procedural programs typically have many built in math functions because they are scientific in nature. Another difference is they also use recursion. Block structured programs allow recursion were most simple procedural programs do not have recursion. Block structured programs can also pass multiple fields in a single parameter. To conclude the main difference between the two styles is that the support for subprograms is greater in block structured languages then it is in simple procedural languages.

Storage Management

Like the handling subprograms, storage management is very similar in both types of languages. Variable names in styles refer to a location in memory, which can be modified, copied, or passed to another function. However, the scope is generally restricted to the block structured it is declared in with block structured languages and to the function in simple procedural languages.

Handling of abstraction and encapsulation

Simple procedural and block structured, procedural languages both use some form of abstraction; however, there are some differences. Functions and procedures are used as a form of abstraction. They both support value and reference parameter. The differences are mainly related to syntax. Not all simple procedural languages encapsulation. Assembler does not; however, C does. Encapsulation is supported through the use of subprograms. Through the use of subprograms, functions and procedures, code redundancy is also reduced.

Simple Procedural vs. Object Based

History
Object Orientation was first developed in 1967, with the invention of SIMULA 67, and later Smalltalk. SIMULA 67 was primarily used in Europe and was the earlier version of Smalltalk 80. Smalltalk 80 was a large departure from the Procedural and Logic languages of earlier, which were used primarily for the manipulation of numbers. Smalltalk 80 brought a new level of abstraction to programming languages which included the use of a visual interface, modularization, inheritance, objects, and encapsulation. While Smalltalk 80 was invented in 1983, by Goldberg and Robson as a project of Xerox Park, the essentials of Object Orientation remain true in all of its versions. The premise of Object Orientation was that it allowed a level of abstraction where, concrete objects, could be modelled and classified in the programming environment.
Object orientated languages were created to improve the interaction between user and system. Object orientated languages were designed to increase the ability to manage memory (example: C), contain inheritance, and have classes, objects, increase coding flexibility and feature encapsulation. On the other hand, Simple procedural languages were designed to reduce the time taken for coding while maximizing effectiveness during runtime, so put it succinctly. Simple procedural languages were “low level” languages, if you judge them by today’s standards. Simple procedural languages did not interact or communicate with the hardware/platform it was operation on. Simple procedural languages were a step up from assembler, a chain in the evolutionary process of languages.

Overview
Object based languages are characterized by interacting objects. An object is a group of procedures that share space, and can interact or be interacted with via messages. Object-oriented languages also support the notions of classes and inheritance. C++, Eiffel, Smalltalk, and Ada are examples of object-based programming languages. The character of object-oriented applications has changed. Originally, most object-oriented applications were small and non-critical. Object-oriented software engineering was chiefly experimental, i.e., not production-oriented Slow programming language interpreters, highly non-portable languages and environments, lack of concurrency-related features, and fairly limited access to low-level machine characteristics were all tolerable.
Obviously, Simple Procedural Languages predate Object Oriented languages, and consist of code in lists, or lines of code. A program written in a procedural language for example would require a list of information. For instance: in a program used to determine the colour of a metal box, a procedural language might follow a form as follows:

10 User Prompt - Print ("please choose box colour");
20 Input from keyboard is entered, an if statement determines what happens next.
30 if input = "yellow"; go to 40
40 End

Compared to object based languages procedural languages have a downfall in the sense that they are unable to change. There is little room for expansion or evolution. In Simple procedural languages, numerous commands and blocks of commands are chosen for making a program do what it’s supposed to; in essence it’s akin to a constructing a house using Lego, all the elements of a program are in one mass taken as a whole. In contrast to Procedural languages, Object Orientation added a new dimension to the strict rules of Procedural programming.
Data Objects

Object-based languages have the same basic data types as simple, procedural languages, namely the integer, floating-point number, character, and variants of these including arrays and bits. Some object-based languages allow for example, long, short, double, real, float, integer are all different ways of declaring number variables depending on how much memory the programmer wants to allocate. This type of specific storage is common in simple, procedural languages and also finds its way into some object-oriented languages, especially C++. However, efficient, exact, programmer-controlled memory management is not the emphasis in object-based languages.

Abstraction and inheritance are the most important aspects in handling data with object-based languages. Object-oriented languages introduce classes, which allow for reusable code by declaring objects of predefined classes. This allows the object to inherit all the data and values of an existing class. These classes can contain several primitive data types, other classes or both other classes and primitive data types. Objects are handled in many different ways, depending on the language. In Java, all classes must be subclasses of a single root class, whereas in C++, there need not be a single root class. In Eiffel, only objects exist at run-time, they do not change and are the same for all instances of a class.

In summary, procedural languages rely solely on the data type for storing and handling information. These data types are often very specific and allow the programmer to determine, within specified ranges, how many bytes are necessary for a given type. Object-oriented languages usually allow for data types, although usually not as many as in the simple, procedural languages. Instead, object-oriented languages store data in objects of predefined classes. These objects inherit the classes’ methods, types and functions. The emphasis is on reusable, abstract objects rather than memory-specific data types.

Sequence Control

Both simple procedural and object-based languages have sequential control that executes statements top-down. The first statement is executed, then the second, and so on until the program ends. Both types of languages offer ways to break the sequential control and return back to line-by-line processing.

The main difference between simple, procedural and object-based languages is how the languages break control flow. Simple procedural languages heavily rely on the goto and/or jump statements which simply tell the computer to go directly to a certain line in the source code. Other methods of breaking sequential control are not always widely supported. Assembler, for instance, has no support for loops or conditionals. Just the opposite for an object-oriented language such as Java. Java supports loops, if..then statements and switch/case statements, but does not support the goto statement.

Another difference is the fragmentation of object-based programming. When an object’s method is called, the program will go to a different location to find what the method does and execute that method. This could be a predefined class in an included library, a pre-written class prototyped in a header file or a class written at the top of the current source file. In these and other ways, declaring objects and calling methods and members of objects can temporarily interrupt sequential control flow.

Handling of subprograms

When it comes to the comparison of these two styles, object oriented languages have more advanced levels of subprograms compared to simple procedural. Object based languages inherited many aspects from previously discussed block structured style. It does have functions, which return a value to the statement, which called it, as well as procedures, which only manipulate parameters of the function or global variables. Each function definition occurs before the main function and therefore they are global functions (this is not a characteristic of block structured) and any function can call any other function. In certain cases, the function definition will be in the class definition and are only accessible from class objects, this is another form of encapsulation that object oriented languages use. With Object based languages the ability to use classes and have private functions, which can define operators for specific objects, the amount of abstract data types is infinite (linked-lists, queues, stacks, etc.)

Storage Management

Storage management between the two types of languages is virtually the same, yet object oriented offers some addition advantages that procedural does not. When declared the space is allocated with procedural, but with object oriented you can easily restrict the scope of the variable. This means the lines of code are able to be manipulated and even able to see the data. Some object oriented languages also offer characteristics such as alias, meaning multiple variables use the same space in memory or dynamic variables which will be given memory at runtime and can be deallocated to free up the memory.

Handling of abstraction and encapsulation

Object-based languages have a much higher level of abstraction and encapsulation that simple procedural languages. Simple procedural languages allow for abstraction of data; however, object-based languages also allow for abstraction of specific features and data. Object-based languages use classes to encapsulate data and processes. Public members are capable of being viewed and modified by a user. Private members are not. Although, friend functions can be used to access private entities if they are declared to be friends. Whole classes can even be defined to be friends. Object-based languages allow for classes to be compiled separately and type checking, so the encapsulation also helps for the development of more reliable and efficient code than using simple procedural languages.

Simple Procedural vs. Logic

History
As discussed above, a good example a simple procedural language is FORTRAN, which was [as we all know] the first high-level language. To rehash, it was developed by John Backus at IBM way back in 1954. It was designed for usage on their IBM 704 systems, released in 1957. All versions, including the latest, FORTRAN 95, were designed as “FORmula TRANslators”. The idea was to emulate mathematical formulae in coding so that scientific applications could be written in a language that looked like math, and could be translated into machine language. Other examples include B, C, ALGOL and PL/I.

Logic Based programming languages came later, in the 1970’s. Of these languages, Prolog, after “PROramming LOGic”, was developed in France and England at the University of Aix-Marseille by Colmerauer and Rousselat, and at the University of Edinburgh by Kowalski. Here the plan was to develop a language that emulated predicate calculus, as the procedural languages emulated mathematics. Applications include database management and Artificial Intelligence, and are limited in scope.

Overview
Logic programming languages are based on a subset of predicate calculus, these programming languages often include statements written in the form of Horn clauses. Axioms and rules are provided which allow the deduction of new facts from other known facts. A logic-based program defines a series of axioms or facts, rules of inference, and a theorem or query to be resolved. The output is true if the facts support the query and false otherwise. PROLOG is an example of a logic based programming language, as I have mentioned above. Logic programming languages are very helpful in the following areas of usage:
· Intelligent Systems - programs which perform useful tasks by utilizing artificial intelligence techniques.
· Expert Systems - intelligent systems which reproduce decision-making at the level of a human expert.
· Natural Language Systems - this can analyze and respond to statements made in ordinary language as opposed to approved keywords or menu selections.
· Relational Database Systems

Logic programming languages have strong declarative emphasis on thinking of the logical relations between objects or entities relevant to a given problem, rather than on procedural steps necessary to solve it [as in procedural languages]. A system decides the way to solve the problem, including the sequences of instructions that the computer must go through to solve it. It is easier to say what we want done and leave it to the computer to do it for us. Logic languages can help us solve problems by searching a knowledge base (or more correctly a database) which would be greatly improved if several processors are made to search different parts of the database. To have some contrasting focus, Logic programming languages are not as widely used as procedural languages; there are several reasons for this:
· Compilers for current logic programming languages detect many fewer errors in programs; therefore programmers have to find all the errors themselves, usually with minimal debugging support. This significantly reduces productivity.
· Implementations of logic programming languages are significantly slow. The designers of applications where performance is important do not even consider logic programming languages.

One main difference is that Simple procedural languages do not have formal logic like that featured in logic programming languages. Simple procedural languages feature a main program, and subprograms. Instructions are sequenced, and executed in order. They share block structure, recursion, and parameter passing by value and name. A plethora of scientific and engineering applications have been written in these languages.

Data Objects

Data objects in logic-based languages have a few resemblances to those in simple, procedural languages. Both distinguish between numbers and character-values and have different ways of allocating memory for the two. Both types of languages have a notion of a non-changing data type, often referred to as the constant. Also, both allow for data that can change, often referred to as a variable.

But the differences begin quickly. Unlike the simple procedural languages, data types in logic-based languages do not need to be declared. One may just look at the name of the type and know if it is a number or character. Furthermore, unlike the number-crunching procedural languages, logic-based languages are ill-suited for calculations. One of the most important of logic-based languages is the concept of propositions and lists. Propositions such as woman(emily)states that “emily” is a 1-tuple in the relation named “woman.” Lists are an ordered collection of terms, very similar the proposition, where woman([emily, jane, mary])is a constant list in the new relation named woman.

Because the data in logic and procedural languages are used for entirely different means, the data is declared, stored and handled in entirely different ways. The goal in simple, procedural languages is to store data as efficiently as possible, often to do complex mathematical manipulations on the data, and return results efficiently and quickly. In logic-based languages, the data is evaluated in terms of expressing and describing relationships, evaluating logical statements and resolution of hypotheses and goals.

Sequence Control

Logic-based languages are not procedural in nature, but instead rely on declarative semantics. This type of control flow is very abstract and difficult to trace. In imperative languages, such as Assembler and C, “the semantics of a simple assignment statement requires examination of local declarations, knowledge of the scoping rules of the language, and possibly even examination of programs in other files just to determine the types of the variables in the assignment statement.” (Sebesta 624). In a declarative grammar, there is no need to consider which sequences are executed or how the statement fits in context with other statements.

Logic-based grammar is entirely reliant on the computer to determine a result. “There is a simple way to determine the meaning of each statement, and it does not depend on how the statement might be used to solve a problem.” (Sebesta 624) The programmer completely frees him/herself from any understanding of how computations can be done. This is obviously a far cry from simple, procedural languages, where every data value is stored in carefully arranged bytes and every manipulation on that data is done in carefully arranged sequences. With simple, procedural languages, the control flow is sequential, with the only exceptions occurring when the programmer intentionally disrupts the flow with a conditional, loop or jump. Logic-oriented languages have nothing like this.

That is not to say Logic-oriented programming lacks sequence control altogether. It does have sequence control, but it is not dependent on the order of statements in source code. Consider the following sequence situations: The language Prolog has goals. It is up to the computer to determine if a goal is true or false. It does this by matching a given goal to a fact on the database. The system may begin with the facts on the database and use bottom-up resolution to find a sequence of matches that lead to a goal. This is called forward-chaining and is used when the number of possibly correct answers is large. However, if the number of potential answers is small, backwards-chaining is a better alternative. With this type of operation, the computer uses top-down resolution which begins with the goal (instead of the facts), and progress to find the facts in the database. Prolog also has a method called backtracking. When a goal has multiple sub-goals, it might not be able to show the truth of one of the sub-goals. It will then reconsider the previous sub-goal in an attempt to find an alternative solution. This is called backtracking because it reconsiders a previously proven goal (or sub-goal) in an attempt to prove a future sub-goal. (Sebesta 631)

Handling of subprograms

Simple Procedural Languages are executed in a line-by-line manner and have calls to functions or subprograms. It can pass parameters by value or reference. Subprograms are difficult in logic based languages, but may be included as function, which returns true or false. The use of subprograms is a vital part of the design of simple procedural languages. Subprograms have the feel of mathematical functions and can be nested, operated upon and composed. Pass by reference, name of value are built in, however they typically don’t use recursion. Libraries are provided with built in mathematical functions, and programmer defined functions are allowed. Static and dynamic memory allocation is allowed.

Storage Management

Logic based languages also allow dynamic memory allocation, but the similarity with simple procedural languages end there. With storage management, a variable name refers to a location in memory, which can be modified, copied and passed to another function. The scope is generally restricted to the function it is declared in. Logic languages have some limited support for pointers. Logic languages also tend to have automatic garbage collection.

Handling of abstraction and encapsulation

Simple procedural languages and logic languages both use abstraction. Simple procedural languages use subprograms or subroutines. Logic languages use modules, which also provide for encapsulation. Logic languages provide a high level of abstraction than simple procedural languages with the use of abstract data types (i.e., stacks, queues, priority queues and lists) and modules.

References

http://134.193.15.25/vu/course/cs441/exercises/2003p1/assembler.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/c%2B%2B.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/eiffel.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/pascal.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/prolog.doc
http://docs.eiffel.com/general/guided_tour/language/tutorial-05.html
http://myrtle.kc.umkc.edu/classes/cs441/w02/simula/
http://www.cs.bsu.edu/homepages/dmz/cs335/ppt/fortran_c/ppframe.htm
http://www.cs.bsu.edu/homepages/dmz/cs335/ppt/pascal/ppframe.htm
http://www.cs.mu.oz.au/research/mercury/information/motivation.html
http://www.cs.sjsu.edu/~fecteau/cs140/SubroutinesI.html
http://www.engin.umd.umich.edu/CIS/course.des/cis400/prolog/prolog.html
http://www.franken.de/users/nicklas/das/papers/prolog_description/discussi.html
http://www.geocities.com/Wellesley/6265/papers/historyofOOP.html
Sebesta, Robert W. Concepts of Programming Languages. 5th Ed, Addison-Wesley Publishing, CA, 2002.

Sebesta,Robert W. Concepts of Programming Languages. 6th Ed., Colorado Springs: University of Colorado, 2003.

PAGE

