CS441 – Programming Languages:

Design and Implementation

Project 3
Group Members:

Brian Buckley

Ryan Johnson

Prasad Natoo

Lisa Presson
Block Structured, Procedural and Object-Based

History & Overview
Block structured, procedural languages were a protraction of simple procedural languages, as mentioned in the previous project. Block structured procedural languages were designed because there was a need to compile a program with just one pass. There was also a need for an initial recursive parsing algorithm for initial compile – this language type allowed that. With regards to Block Structured procedural languages, ALGOL was one of the first widely used languages of its type. It was however later replaced by Pascal to overcome ALGOL’s deficiencies. Pascal then became the dominant language in this language group for nearly two decades, 70’s – 80’s. The birth of programming language Pascal was very significant step for the lineage of block structured procedural languages. Nicklaus Wirth created Pascal in 1971. Pascal was the product of Wirth’s ability to coalesce powerful tools from existing languages. It was mostly based off of ALGOL 60. Object oriented languages took the idea of functions and subprograms from block structured languages. It does have functions, which return a value to the statement, which called it, as well as procedures, which only manipulate parameters of the function or global variables. Object Orientation was first developed in 1967, with the invention of SIMULA 67, and later Smalltalk. SIMULA 67 was primarily used in Europe and was the earlier version of Smalltalk 80. Smalltalk 80 was a large departure from the Procedural and Logic languages of earlier, which were used primarily for the manipulation of numbers. Smalltalk 80 brought a new level of abstraction to programming languages, which included the use of a visual interface, modularization, inheritance, objects, and encapsulation. While Goldberg and Robson as a project of Xerox Park invented Smalltalk 80 in 1983, the essentials of Object Orientation remain true in all of its versions. The premise of Object Orientation was that it allowed a level of abstraction where, concrete objects, could be modelled and classified in the programming environment. Block structured languages allow for global functions as well as local functions which are declared inside another functions and therefore only accessible inside that function. This difference is one reason languages such as C++ only qualify as a structured language and not a block structured language. Moreover, Object orientated languages were created to improve the interaction between user and system. Object orientated languages were designed to increase the ability to manage memory (example: C), contain inheritance, and have classes, objects, increase coding flexibility and feature encapsulation. Object based languages and Block structured languages have the same primitive data types, classes allow for an infinite amount of abstract data types. This means object oriented languages will be more flexible with a specific characteristic existing for any given data type. Block structured procedural languages were used in academia. No other language represents block structured procedural languages better than Pascal. This type of programming language was designed for programmer flexibility rather than run-time performance (procedural languages). Block structured procedural languages possess activation records, but employee scope rules and nested block structures for structured data. The language group does have in its design some run time penalty. The use of Pascal has dropped, but many of its features, which lend from the block structured procedural design, are still applied in languages today. Block structured programming languages emphasize reliability of algorithms and a corroborative code structure. The design of block structured programming languages make it relatively easy for it to be taught in classrooms as introductory programming courses. Logic follows that languages such as Pascal and even Modula have used in the area of teaching computer science and programming. To recap, two decades ago, Pascal was the preferred choice in academia. Another area of use is business software applications because of features of readability and program verification. Block Structured Procedural Languages are faster and good for computations making them good for scientific applications. As mentioned in the previous project, Object based languages are characterized by interacting objects. An object is a group of procedures that share space, and can interact or be interacted with via messages. Object-oriented languages also support the notions of classes and inheritance. C++, Eiffel, Smalltalk, and Ada are examples of object-based programming languages. The character of object-oriented applications has changed. Originally, most object-oriented applications were small and non-critical. Object-oriented software engineering was chiefly experimental, i.e., not production-oriented Slow programming language interpreters, highly non-portable languages and environments, lack of concurrency-related features, and fairly limited access to low-level machine characteristics were all tolerable. Block structured languages was a step up from previous languages in the sense that it fixed the lack of encapsulation from previous language groups by allowing for separate compilation & extended abstraction.

Data Objects

Block structured procedural and object-based languages share many common data type characteristics. Both support a variety of pre-defined data types that include integer, character, floating-point strings and arrays. Both types of languages enjoy static typing, which means that once a variable is defined as a certain type, it cannot be assigned a different type. Both languages are strongly typed, meaning that every variable must be declared. Some object-based languages, such as JavaScript, have neither static nor strong typing. However, in general, most object-based languages do.

Despite the many similarities, there are some major differences between block structured, procedural and object-oriented languages. Unlike object-based languages, in block-structured languages, variables, constants, types and labels must be declared in separate blocks. In Pascal, to declare a constant and a variable, one must use the following syntax:

var

myVar: real

(other variable declarations)

const

myConst: real

(other constant declarations)

begin

myVar :=12

…

end

In C++, however, there is no need to have any sort of block separation:

int myVar;

const int myConst;

myInt=myconst=12;

The greatest difference between block structured, procedural and object-based language is in the use of abstract data types, inheritance and dynamic binding of method calls to methods. New abstract data types can inherit the data and functionality of an existing data type, but also modify and add to that existing data type. This inheritance provides a framework for a hierarchy of related classes. The major drawback of simple procedural languages is the lack of hierarchal abstract data types. In Pascal, one can mimic an abstract data type by building a record. However, if a programmer wanted to re-use that record with only simple modification, s/he would have to re-write the entire record. In an object-oriented language, the programmer would inherit all the features from the abstract data type, dynamically build new methods (or modify existing methods) and create a new class, which, in turn, another class or object could inherit. (Sebesta 6th Ed., p. 459)

Sequence Control

Block structured, procedural languages and object-based languages both deviate from line-by-line sequential control flow in the way they group data. In block-structured procedural languages, variables, constants, types and labels are located in different parts of the source code than the executable lines of code. These individual blocks help the programmer better read and write the code, and the computer knows where to find each variable, list and constant.

Similarly, object-oriented programming separates its data. Unlike the block-structured, procedural languages, object-oriented languages do not separate simple data types in blocks. However, they do separate hierarchal abstract data types into separate units. For example, in C++, separate header files often outline classes. The methods and functions unique to the classes are spelled out in separate source files. The executable code calls these separate files before the main part of the program.

Both object-oriented and block-structured, procedural languages start executable lines of code with certain keywords and symbols. In C++, the code starts with the keyword main and a left curly brace. It ends with the right curly brace. Similarly, in Pascal, the executable code starts with the keyword begin and ends with the keyword end. Once inside the executable code, the lines are executed top-down. The sequential control flow can only be interrupted with control statements such as if..then statements, loops, goto, switch/case and similar constructs. Inside the executable markers (main{}, begin..end, etc), object-oriented and block-structured procedural languages are very similar in both form and grammar.
Handling of Subprograms

The idea for subprograms in object-oriented languages came from block-structured languages. Object-oriented languages have subprograms (functions), which return values to the statement that called it. Procedural languages only manipulate parameters of the function or global variables. Object oriented languages do not have the ability to have local functions, meaning declaring a function inside another function. Object oriented languages have only two types of functions, global and class functions. Class functions are only accessible by objects of that class. Block structured languages have the ability to have global functions as well as local functions. The local functions are declared inside another function and therefore only accessible inside that function. This same difference also explains the difference in the handling of data objects. Both types of languages have the same primitive data types, classes allow for an infinite amount of abstract data types. This means object oriented languages will always be more flexible when a specific characteristic must exist for any given data type.

Storage Management

Object-based languages support functions and procedures, and they can be very sophisticated. These subprograms can be defined in many different types such as integer, float, double, long integers, void. They can be overloaded and the parameters may be pass-by-value or pass-by-reference. Class is one of the main features of object-based language. It is allowed to store other data types and many functions inside it. In object-based language, storage may be dynamically allocated by pointers, or statically allocated. Garbage collection functions may be used to delete unwanted storage. Storage management between the two types of languages is virtually the same, yet object oriented offers some added properties. When declared the space is allocated and with both language types you can easily restrict the scope of the variable, meaning which lines of code are able to manipulate or even see the data. Some object oriented languages also offer characteristics such as aliases, meaning multiple variables use the same space in memory or dynamic variables which will be given memory at runtime and can be deallocated to free up the space.

Handling of Abstraction and Encapsulation

Block structured, procedural languages and object-based languages both utilize abstraction and encapsulation. Object-based languages take encapsulation a bit further though. Both types of languages use functions and procedures for abstraction of information. Some block structured, procedural languages even use modules for abstraction and encapsulation of code. Rather than modules, object-based languages use classes. Classes and modules both enable for reuse of code. Both types of languages include member and non-member functions; however, object-based languages allow for the creation of public, private and protected data members and member functions. The level of abstraction is more defined. Public data members and functions are not only visible to the class, but also to clients of the class. Private data members and functions are only visible to the class, which increases the abstraction in object-based languages. Protected data members and functions are visible to the class and to classes derived from the class. Friend functions are defined if access is needed to the private data members or private member functions. For the block structured procedural languages which use modules, the level of encapsulation is similar. The level of abstraction, however, is actually stronger in object-oriented languages because the data members and member functions can be declared as private, thus denying user access to those items.

Block Structured, Procedural and Functional

History & Overview
Functional languages were created in the 1950’s for use in artificial intelligence. The first functional programming language was invented to provide language features for list processing, the need for which grew out of the first applications in the area of artificial intelligence. Linguists were interested in natural language processing; psychologists were interested in modelling human information storage and retrieval, along with other fundamental processes of the brain. Certain needs came up in the programming languages domain, which were unanswered for at that time. FORTRAN was the closes language that was used for such problems. LISP was therefore produced. All computation in a functional program is accomplished by applying functions to arguments. Neither the assignment statements nor the variables that abound in imperative languages are necessary in functional language programs. This basic feature makes programming in a functional language very different from programming in an imperative language. Coming back to a historical perspective, LISP dominated functional programming the 70’s and 80’s. A dialect of LISP was produced call Scheme. Scheme supported first-class procedures, lexical scooping, and continuations. The syntactic structure in functional languages is generally very simple and applying functions to arguments does the computations in these languages. Common LISP was another descendent of LISP. Both language groups were developed for use in the academia. Functional languages are used to evaluate functions and block structured procedural languages are used for creating actual applications. Block structured languages are developed to mirror the English language making them general-purpose languages.

Data Objects

Block structured, procedural languages and functional languages differ greatly in handling of data objects. Block-structured, procedural languages are very concerned with the amount of memory each data type consumes. Programmers delicately determine exactly how much room is needed for each type and allocate just enough space to properly represent the type. In block structured languages, the types are declared in separate blocks, with the blocks determining if the value is a variable, constant, type or label.

Functional languages could not be more opposite. “A purely functional programming language does not use variables or assignment statements.” (Sebesta 6th Ed., p. 583) The programmer cares nothing for how memory is used, and leaves it entirely to the compiler/interpreter. Functional languages, as the name implies, use only functions. The data types are not data types in the imperative sense, but only a way to represent symbols or numeric literals. In fact, the original LISP language was completely typeless. And although some functional languages, such as ML, incorporate imperative-language features such as strong typing, purely functional languages are devoid of any types.

Functional languages are meant to mimic mathematical functions. For example, in the LISP and Scheme languages, the mathematical function to square a number is simply written:

(LAMBDA (x) (* x x))

Whereas in Pascal or Modula-2, one would have to name the function, declare variables to hold the value before it is squared and a variable to hold the value after it is squared. And these variables must be declared in blocks outside the executable portion of the source code. The imperative languages are more difficult to use, are more complicated because the programmer must allocate memory for each variable, and arguably less intuitive. However, efficient block-structured procedural languages are faster and more powerful which is why people outside academia seldom use functional languages for application development. (Sebesta 6th Ed., p. 612)

Sequence Control

In block-structured, procedural languages, the control flow is straightforward. Blocks separate the variables, constants, types and labels from the executable lines of code. In the executable portion of the source code, the flow is top-down sequential unless a loop, conditional, goto or some similar constraint interrupts the flow. Purely functional languages do not have types, only functions. The control flow is modeled after mathematical functions. This discrepancy yields obvious differences between the two languages.

Take, for example a mathematical factorial function:

1 if n=0

F(n) =

n* f(n-1) if n>0

Mathematically this problem is solved using recursion. There are only two predicates to evaluate. “The value of such a conditional expression is the value of the expression associated with the predicate that is true,” (Sebesta 6th Ed., p. 591) and only one predicate can be true at a given time. This is how functional language would evaluate this type of expression. An iterative language, such as the block-structured procedural language, would have to define each variable in the appropriate block, create a sub-procedure such as a function or module, create iterative statements for the sub-procedure and carefully consider each expression, top-down, line-by line.

Handling of Subprograms

Functional languages have subprograms, which are usually called functions. These functions allow the languages to utilize recursion. This is similar to functions used in block-structured programs. Block structured programs also have subprograms called procedures. Procedures do not return a value. The difference is that block-structured languages have subprogram branching and where the blocks have no parameters in the subprograms. All functional languages have many built in functions such as arithmetic functions, looping functions and other list manipulation functions. These new functions are defined in terms of existing functions. Once a function is defined it may be used in the same fashion as functions that are built into the language. Finally, sub-programs in functional languages are not named if they are locally scoped and not reused.

Storage Management

All these types of languages have many differences when it comes to storage management. One of the big differences is the use of pointers. Functional languages do not have support for pointers or direct memory access. They also have automatic memory management for allocation and de-allocation of memory and functional languages usually have automatic garbage collection. In a Block Structured Procedural language the result of an expression is stored in a memory location, which is represented by a variable defined in a program. As I stated earlier this is different from functional languages because there are no assignment statements in a true functional language. Like object-based languages, functional languages also use garbage collection to save memory space. Objects are dynamically allocated in a heap where they are kept until no longer needed, then automatically deallocated. In both groups of language families, using smaller and simper functions can create large functions. Both groups allow recursive and simple call-return functions.

Handling of Abstraction and Encapsulation

Both block structured, procedural languages and functional languages use abstraction and some encapsulation. Block structures, procedural languages use subprograms such as procedures and functions as abstraction. Functional languages use abstraction of code using functions. Although the two language types may have about the same levels of abstraction, encapsulation is stronger in block structured, procedural languages. Block structured, procedural languages encapsulate code in procedures and functions. Some of the languages even use modules to encapsulate code. The modules provide for stronger encapsulation and abstraction of the code.

Block Structured, Procedural and Logic

History & Overview
Moving on, Block structured, procedural languages were a protraction of simple procedural languages. Block structured procedural languages were used in academia. The birth of programming language Pascal was very significant step for the lineage of block structured procedural languages. Nicklaus Wirth created Pascal in 1971. Pascal was the product of Wirth’s ability to coalesce powerful tools from existing languages. It was mostly based off of ALGOL 60. Pascal’s advent led to the basic programming skills to be taught to students in classrooms; this also allowed for the efficient use on most computers. Pascal’s block structure was self-evident and it was able to utilize sub-programs. Sub-programs permitted code written in Pascal to be compile and run in a non-linearly. Logic Based programming languages came later, in the 1970’s. Of these languages was Prolog, which was developed in France and England at the University of Aix-Marseille by Colmerauer and Rousselat, and at the University of Edinburgh by Kowalski. The motivation was to come up with a language that emulated predicate calculus, as the procedural languages emulated mathematics. Applications include database management and Artificial Intelligence. Logic programming languages are based on a subset of predicate calculus; these programming languages often include statements written in the form of Horn clauses. Axioms and rules are provided which allow the deduction of new facts from other known facts. A logic-based program defines a series of axioms or facts, rules of inference, and a theorem or query to be resolved. The output is true if the facts support the query and false otherwise. PROLOG is an example of a logic based programming language, as I have mentioned above. Logic programming languages are very helpful in the following areas of usage: Intelligent Systems - programs, which perform useful tasks by utilizing artificial intelligence techniques. Expert Systems - intelligent systems that reproduce decision-making at the level of a human expert. Natural Language Systems - this can analyze and respond to statements made in ordinary language as opposed to approved keywords or menu selections and finally Relational Database Systems. Logic based programming languages vary very much with regard to Block structured languages. Logic programming languages solve problems by true or false predicated of the processes, rather than the computed value. This strategy makes for very difficult and inefficient programming, but is well suited for applications in artificial intelligence that depend on decision making. Applications also include database management, expert systems, and processing of natural languages, again, where decision-making is more logic focused than mathematically computed. Logic programming has been proven to be highly inefficient. That’s why their usage has been restricted to certain fields as mentioned above.

Data Objects

Data types in block-structured procedural languages are memory specific and plentiful. Pascal supports real, boolean, character, enumerated, arrays, pointers, sets and records. Each of these data types can be even more memory specific. For example some Pascal variants contain the sortreal and longreal data types that empower programmers to specifically determine how much memory the data types will need. Pascal and Modula-2 allow types to be both constant (unchangeable) and variable (dynamic). Block-structured, procedural languages are strongly types and static, meaning the variables must be declared and once declared, they cannot change type.

Logic languages are more concerned with giving the programmer freedom. Prolog, for example, has only a few data types such as the list, atom, integer and term. Memory management is left to the compiler/interpreter and not left for the programmer to decide. Prolog does support constants and variables, often stored in the data type term. However, unlike the block-structure of Pascal, Prolog does not require that the constants and variables be declared in designated, separate blocks outside the executable code. In fact, Prolog does not require that the variables and constants be declared at all. Furthermore, variables are not bound, meaning that they can switch type.

Logic languages, while supporting many of the same data types as the block-structured, procedural languages, do not have the variety of types and do not empower the programmer to delicately allocate memory. Furthermore, logic-based languages are neither strongly typed nor static. Logic-based languages do not have any separate block-structure, but allow the programmer to use types anywhere in the program.

Sequence Control

Logic-programming languages handle sequence control in different ways than any other language. Prolog, for example, is more concerned with goal resolution. Prolog uses a set of rules and facts in a database to determine if a goal is true. Sometimes the rule is found in the database and sometimes the rule is inferred through a set of propositions that are in the database. Consider the following fact (the first statement) and inference rule (the second statement)

Father (bob)

Man(X) :- father (X)

If one were to type man(bob), Prolog would search for and find the first proposition. It would see that bob is a father by matching the proposition with the right side of the second rule. It would look at the left side of the inference rule and see that bob is a man, thus declaring the goal man(bob) to be true. It could also match the left side of the second proposition to the fact first and then match the right side. The first way is an example of forward-chaining and the second is an example of backwards chaining.

If there are many inferences to be made, and many inferences to search in the database, the search can be depth-first or breadth-first. A depth-first search finds the proof for a subgoal before going on to another subgoal. A breadth-first search works on all proofs simultaneously. If, during a depth-first search a subgoal cannot be proven, the computer can move backwards and try to prove a previously proven subgoal in a different way to allow the unproven subgoal another chance at being proven. This act of re-proving is called backtracking and is another method in Prolog’s control flow.

Block-structured, procedural languages are nothing like Prolog. If one wants to institute backtracking, depth-first searches and inferences in Modula-2, a programmer would have to write many modules, replete with different blocks, control structures and functions. In Prolog, it is as easy as simply writing man(bob) and letting the compiler/interpreter do the work and decision making.

Handling of Subprograms

In object based, subprograms comprise of functions, procedures and modules, which make the program modular and easy to understand. Functions are rather easy to debug and may or may not return a value. There exist both global variables and local variables. Modules in object base programming languages provide means of packaging global data, derived types and associated operations, interface blocks, and name list groups. In logic-based languages procedures are often recursive and include some built in predicates. They may be difficult to debug. Recursive functions are a useful tool but require a lot of storage space. This is similar to functions used in block-structured programs. Block structured programs also have subprograms called procedures. Procedures do not return a value. The difference is that block-structured languages have subprogram branching and where the block subprograms have no parameters.

Storage Management

These languages have many differences in storage management. One of the big differences is the use of pointers. Logic based languages do not have support for pointers or direct memory access. They also have automatic memory management for allocation and de-allocation of memory and functional languages usually have automatic garbage collection. In a Block Structured Procedural language the result of an expression is stored in a memory location, which is represented by a variable defined in a program. Logic based languages also allow dynamic memory allocation, but the similarity ends there. Sub programming is difficult, but may be included as function, which returns true or false. Logic based languages also allow dynamic memory allocation, but the similarity with simple procedural languages end there. With storage management, a variable name refers to a location in memory, which can be modified, copied and passed to another function. The scope is generally restricted to the function it is declared in. Logic languages have some limited support for pointers. Logic languages also tend to have automatic garbage collection.

Handling of Abstraction and Encapsulation

Logic languages do not use abstraction and encapsulation as block structured, procedural languages do. Prolog specifically uses a high-level use of abstraction. It does not require as much knowledge about how a machine processes information or instructions expressed in the statements of the language. Logic languages are declarative rather than procedural. Logic programming languages use modules for stronger levels of encapsulation.

References

http://134.193.15.25/vu/course/cs441/exercises/2003p1/c%2B%2B.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/eiffel.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/pascal.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/prolog.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/yacc.doc
http://l.students.umkc.edu/lpec9z/proj1.htm
http://myrtle.kc.umkc.edu/classes/cs441/w02/simula/
http://web.uvic.ca/~esg02/ling482/Prolog/intro.html
http://www.cs.bsu.edu/homepages/dmz/cs335/ppt/fortran_c/ppframe.htm
http://www.cs.bsu.edu/homepages/dmz/cs335/ppt/pascal/ppframe.htm
http://www.cs.bsu.edu/homepages/dmz/cs335/ppt/pascal/ppframe.htm
http://www.cs.colorado.edu/~diwan/5535-00/snyder.pdf
http://www.heuse.com/s.htm\
Sebesta,Robert. Concepts of Programming Languages, 6th Edition. Colorado Springs: University of Colorado, 2003

Sebesta, Robert W. Concepts of Programming Languages. 5th Ed, Addison-Wesley Publishing, CA, 2002.
PAGE

