CS441 – Programming Languages:

Design and Implementation
Project 4

Group Members:

Brian Buckley

Ryan Johnson

Prasad Natoo

Lisa Presson
Object-Based Vs. Functional

History

SIMULA I (1962-65) and Simula 67 (1967) were the two first object-oriented languages. Simula 67 introduced most of the key concepts of object-oriented programming: both objects and classes, subclasses (usually referred to as inheritance) and virtual procedures, combined with safe referencing and mechanisms for bringing into a program collections of program structures described under a common class heading (prefixed blocks). At its inception, object orientated programming was created to aid in the realm of simulation. As it evolved, it began to enhance general programming techniques. In the 1980s tremendous resources were put behind the ADA language and PROLOG (the Japanese "Fifth Generation Computer Project"), and many believed that ADA and PROLOG would fight for dominance in the 1990s. Instead object-oriented programming is today (in the late 1990s) becoming the dominant style for implementing complex programs with large numbers of interacting components. Among the multitude of object-oriented language are Eiffel, CLOS, SELF. In particular the Internet-related Java (developed by Sun) has rapidly become widely used in recent years. BETA is a very general object-oriented language in the Simula tradition. Object orientated programming is seen today as a way of arranging and reusing software modules. Object orientated programming has already become the dominant style for implementing complex programs with large numbers of interacting components. And some languages, like Java [as mentioned above], are becoming platform independent.

Moving over to Functional Languages: Lambda calculus could be considered the first functional programming language, though it was never designed to actually be executed on a computer. Lambda calculus is a model of computation designed by Alonzo Church in the 1930s that provides a very formal way to describe function evaluation. The first computer-based functional programming language was LISP, developed by John McCarthy while at the Massachusetts Institute of Technology in the late 1950s. While not a purely functional programming language, LISP did introduce most of the features now found in modern functional programming languages. Scheme was a later attempt to simplify and improve LISP. Scheme supported first-class procedures, lexical scooping, and continuations. In the 1970s the language ML was created at the University of Edinburgh, and David Turner developed the language Miranda at the University of Kent. The language Haskell was released in the late 1980s in an attempt to gather together many ideas in functional programming research. The syntactic structure in functional languages is generally very simple and applying functions to arguments does the computations in these languages.

Overview

Object-Oriented languages were created to augment general programming techniques such as reusability, while Functional languages were developed mainly for symbolic computations
and are based on mathematical functions. Unlike in object-based language like C for example (and others), in functional programming there is no explicit memory allocation and no explicit variable assignment. However, these operations occur automatically when a function is invoked; memory allocation occurs to make space for the parameters and the return value, and assignment occurs to copy the parameters into this newly allocated space and to copy the return value back into the calling function. By disallowing side effects in functions, the language provides referential transparency. Looping, another imperative programming construct, is accomplished through the more general functional construct of recursion. Recursion in functional programming can take many forms and is in general a more powerful technique than looping. Object Oriented languages can be used in just about any application of programming desired. Object Oriented languages do not have to be written in a definitive style, they can be written procedurally, and this occurs many a times. Object Oriented languages make programming expedient, flexible and dependable because of the ability to re-use code that is known to work. Many businesses are moving more towards a “client server” architecture, which has been made easier by using Object Oriented languages. We see that Object orientated languages are pretty broad in their design and application. Functional languages were however apparently and obviously created for a specific purpose. So it’s flexibility cannot really be its downfall since it was designed for a specific purpose.

To recap, Functional languages were designed to mimic mathematical functions. Because they are based on mathematical functions members of a domain set are mapped to a range set. Functional languages provide a set of primitive functions that can be used to construct complex functions using functional forms. Also included is a function application operation and a structure for storing data. They were primarily created for use in artificial intelligence (AI). Obviously object orientated languages are widely used, whilst functional languages are not quite that widely used. Functional Languages are very simple syntactically but are limited in their scope of usefulness. Not all is gloomy for functional languages, conventional languages place conceptual limits on the way problems can be modularised. Functional languages push those limits back. There are two features of functional languages in particular, higher-order functions and lazy evaluation, can contribute greatly to modularity. For example: manipulation of lists and trees, program several numerical algorithms, and implementation of the alpha-beta heuristic (an algorithm from Artificial Intelligence used in game-playing programs). Since modularity is the key to successful programming, functional languages are vitally important to the real world – despite their limited use.

Handling of Data Objects

Most object-based languages include primitive data types including integer, floating point, and character types. These primitive types are memory specific and, normally, do not inherit from any parent or predefined class. While most object-oriented languages support primitive data types, the primary emphasis is on encapsulation, abstraction and inheritance. By declaring objects of predefined classes, objects inherit all of the data types and methods of an existing class thereby reducing the need to rewrite identical code. Most object-based languages are static and strong, meaning each data type and object must be declared prior to use and once it is declared as a certain type, it cannot be changed to a different type.

Object-based languages offer a programmer a diverse amount of types and objects. From the simple integer to complex, prewritten objects, programmers are given myriad ways to store data. Functional languages, however, free the programmer from deciding which type or object should house some particular data. Take, for example, the following snippet of code from the functional language LISP:

A (B C) D (E (F G)))

Internally, the list is stored as a single, linked-list structure. However, a programmer need not declare a linked list (or write one) and store the values. One need to simply type the code and the computer does the rest. (585)

Functional languages handle types in very different ways. Functional languages were initially designed to not use types at all, only functions. The original LISP was such a language. This is obviously different from the very encompassing data types and objects in object-based languages. However, the lack of types proved problematic. Forthcoming functional languages such as Haskell and ML incorporated imperative features such as data types and strong typing. In Haskell, the val..in statement binds a name to a value, and the name cannot be later bound to a new value. While this is not the same as the strong, static typing in many object-based languages, the grammars are similar. Despite the similarities, these functional languages still lack inheritance and the class-object relationships.

Handling of Sequence Control

Object-based languages default to line-by-line, top down sequential control. However, there are many ways to deviate from this control. First, when an object is declared, the program will find the proper base class, whether it be at the top of the current file, in another file or in a separate library. Also, object-based languages will deviate from top-down sequential control by using loops, if..then statements, case/switch statements and, depending on the language, the goto statement.

Functional languages do not have top-down, sequential structure. Instead, the control flow of functional languages is often done at the computer level with recursion and internal control statements. “Whereas functions in imperative languages are defined as collections of statements that may include several kinds of sequence control flow, mathematical functions do not have multiple statements and use only recursion and conditional expressions for evaluation flow.” (591)

Many functional languages do share common control statements with object-based languages, especially those functional languages that borrow features from imperative grammars. For example, Scheme and ML have an if statement that closely resembles the if statement in Java and C++. Haskell includes a conditional expression that closely resembles a switch/case statement in object-based languages:

Haskell:

sub n

| n == 10
= 0

| n == 100
= 2

| otherwise
= 1

C++:

switch(n)

{

case 10

someVal=0;

break;

case 100

someVal = 2;

break;

default

someVal=1;

}

While Haskell’s otherwise conditional is meant for function definition and C++ is used for variable definition, the syntax is similar.

Handling of subprograms

The idea for subprograms in object-based languages came from block-structured languages. Object-based languages have subprograms (functions and procedures), which return values to the statement that called it. The procedures can be defined in many different types such as integers, float, double, long integers, and void subprograms. The subprograms can be overloaded and the parameters may be pass-by-value or pass-by-reference. With Object based languages the ability to use classes and have private functions, which can define operators for specific objects, the amount of abstract data types is infinite (linked-lists, queues, stacks, etc.) Functional languages have subprograms, which are usually called functions. These functions allow the languages to utilize recursion. All functional languages have many built in functions such as arithmetic functions, looping functions and other list manipulation functions. These new functions are defined in terms of existing functions. Once a function is defined it may be used in the same fashion as functions that are built into the language. Finally, sub-programs in functional languages are not named if they are locally scoped and not reused.

Storage Management

Object-based and Functional languages are also similar in the fact that they use garbage collection to save memory space. In Scheme, objects are dynamically allocated in a heap where they are kept until no longer needed, then the memory is automatically de-allocated. In both groups of language families, using smaller and simper functions can create large functions. Both groups allow recursive and simple call-return functions. Classes are one of the main features of object-based language. It is allowed to store other data types and many functions inside it. In object-based language, storage may be dynamically allocated by pointers, or statically allocated. Garbage collection functions may be used to delete unwanted storage. Functional languages do not have support for pointers or direct memory access. They also have automatic memory management for allocation and de-allocation of memory and functional languages usually have automatic garbage collection.

Handling of abstraction and encapsulation

The level of abstraction and encapsulation is much more extensive in object-based languages than in functional languages. Object-based languages allow for abstraction of specific features and data. Functional languages use functions for abstraction of code. Object-based languages use classes to encapsulate data and processes. The level of encapsulation for functional languages does not go far beyond using functions. Object-based languages also enable a programmer to determine which members and functions can be viewed and modified by a user. Public members are capable of being viewed and modified by a user. Private members are not. Friend functions can be created and used to access private entities if they are declared to be friends. Whole classes can even be defined to be friends. Object-based languages allow for classes to be compiled separately, so the encapsulation also helps for the development of more reliable and efficient code than using functional languages.

Object-Based Vs. Logic

History

To regurgitate the above history section, SIMULA I (1962-65) and Simula 67 (1967) were the two first object-oriented languages. Simula 67 introduced most of the key concepts of object-oriented programming: both objects and classes, subclasses (usually referred to as inheritance) and virtual procedures, combined with safe referencing and mechanisms for bringing into a program collections of program structures described under a common class heading (prefixed blocks). At its inception, object orientated programming was created to aid in the realm of simulation. As it evolved, it began to enhance general programming techniques. In the 1980s tremendous resources were put behind the ADA language and PROLOG (the Japanese "Fifth Generation Computer Project"), and many believed that ADA and PROLOG would fight for dominance in the 1990s. Instead object-oriented programming is today (in the late 1990s) becoming the dominant style for implementing complex programs with large numbers of interacting components. In particular the Internet-related Java (developed by Sun) has rapidly become widely used in recent years. Object orientated programming is seen today as a way of arranging and reusing software modules. Object orientated programming has already become the dominant style for implementing complex programs with large numbers of interacting components. On the other hand, Logic based programming languages came a decade later - in the 1970’s. Logic programming is characterized by programming with relations and inference. Logic Based languages are based mainly on mathematics. One such language is Prolog, which is based on predicate calculus and was not widely used until 1981 by the Japanese government when they wanted to develop intelligent machines. Prolog was developed in France and England at the University of Aix-Marseille by Colmerauer and Rousselat, and at the University of Edinburgh by Kowalski. Object-Oriented languages were created to enhance general programming techniques such as software re-use while Logic languages were developed based on predicate calculus and used primarily for AI.

Overview

Object-Based Languages are geared towards professionals. Ada is used in the “professional culture”, which is easily defined as the professionals whose primary function is to design and write software of a fairly permanent nature. Also, Object Oriented languages basically were created to enhance programming in general. They can be used in just about any application of programming desired. Object-Based Languages do not have to be written in a definite style, they can be written procedurally too. Object-Based Languages makes programming faster, flexible, and dependable because of the ability to re-use code that is known to work. Many businesses are moving more towards Client-Server architecture and this has been made much easier by using Object based techniques.

Under Logic based programs, specific problems are solved using the truth or falsehood of the processes, rather than the computed value. This has been likened to using the logical components of the CPU, versus the arithmetic components. This strategy makes for very difficult and inefficient programming, but is well suited for applications in artificial intelligence that depend on decision making. Its application can be traced from its design. A logic program consists of a set of axioms and a goal statement. The rules of inference are applied to determine whether the axioms are sufficient to ensure the truth of the goal statement. The execution of a logic program corresponds to the construction of a proof of the goal statement from the axioms. In the logic programming model the programmer is responsible for specifying the basic logical relationships and does not specify the manner in which the inference rules are applied. Thus Logic + Control = Algorithms. Applications for Logic languages include database management, expert systems, and processing of natural languages, again, where decision-making is more logic focused than mathematically computed. Logic languages applications include: Relational Data Bases, Natural Language, Interfaces, Expert Systems, Symbolic Equation solving, Planning, Prototyping, Simulation and Programming Language Implementation. Since Object based languages are widely used in the realms of software engineering, it would be useful to compare Logic programming languages and see how they fare in this domain. Logic programming languages have the following going for them: Closer to problem domain thus higher programmer productivity; Separation of logic and control (focuses on the logical structure of the problem rather than control of execution); Simple declarative semantics and referential transparency; Suitable for prototyping and exploratory programming; Strong support for meta-programming; Transparent support for parallel execution. And the following going against them: Operational implementation is not faithful to the declarative semantics; Unsuited for state based programming.

Again, just like the previous comparison between object-based and functional languages, we can clearly see that object orientated languages are very broad and logic languages are more restricted to their application areas. It is also true in this case that object orientated languages are more widely used than logic languages. Logic languages are generally very simple syntactically and very easy to understand, but seem to be limited in their scope of usefulness, while the opposite can be said for object-based languages

Handling of Data Objects

As stated above, object-based languages, for the most part, have simple, memory specific data types and objects that inherit from a class. These are the two major ways to hold data. Logic-based languages, in particular Prolog, parallel this type of data structure in many ways. Prolog contains terms, which may be constants or variables. A constant is an atom or an integer. Atoms are symbols. When declaring the name brian in Prolog, it is recognized as a string of symbols. Any string of symbols is an atom, and is a constant because it begins with a lowercase letter. Any type of constant atom is a term. This hierarchy (brian (string of symbols(constant atom(term) is far simpler than the complex class-object relationship in Java or C++, but still displays some hierarchal traits.

Object-based languages can combine many different types and objects into one inclusive class and declare objects of that class which can be further manipulated. Prolog also has a way of taking several data types and combining them into one structure with the following syntax:

functor(parameter list)

The functor is any atom and is used to identify the structure. The parameter list can be any list of atoms, variables or other structures…structures are the means of specifying facts in Prolog. They can also be thought as objects, in which case they allow facts to be stated in terms of several related atoms.” (627) While these Prolog structures can be thought to mimic objects, they are not objects. Objects must have classes from which to inherit. These classes must be carefully defined. In Prolog all one needs to do is simply type:

object(member1,member2)

And the functor “object” is completely defined with the parameters “member1” and “member2.” This is all that is needed to define the functor, unlike object-oriented languages which would demand a completely defined class.

Many other differences exist between Prolog and object-based languages. For example, most object-based languages are strongly typed and must be declared. Prolog, on the other hand, does not require definition before use. “Variables are not bound to types by declaration.” (627) The computer knows a variable because the first character is upper-case. Constants begin with lower case. Binding a variable to a value is called instantiation and only lasts as long as needed to satisfy one completed goal.

Prolog makes use of the list data type, a strong deviation from object-based languages. Whereas object-based languages do use lists as in the predefined linked-list, enumerated data types and arrays, the list in Prolog is a core data type and needs no pre-definition (as does the linked-list class). The following syntax:

“New_list ([apple, prune, grape kumquat])

states hat the constant list…is a new element of the relation named new_list.” (636) The list may be queried against the database of facts, another element may be appended to it or it may be appended to another list.

Handling of Sequence Control

As discussed above, object-based languages have a top-down sequential control that is often interrupted by calls to different files, calls to different places in the same file (when an object is defined within the source) and control statements. But no matter how the sequence of control is handled, the programmer can often see, in the source code, how the code is handled. For example, if an object is declared, and the program jumps to the class definition, the programmer can physically see the class description. If the program uses a for loop to populate an array, the programmer can physically see the code that is executed each time the loop is traversed.

In logic-based languages, the programmer can see very little of what the computer is doing. Unlike imperative languages, much of the sequence of control occurs at the computer-level, far from the programmer’s awareness. Logic-based languages are concerned primarily with goal resolution. The programmer states a fact (or a statement that could be proven). The computer than queries an internal database of known truths and determines the truth of the statement. All of this is done internally, and the programmer does not know, or care how.

When determining the validity of a statement by using goals, a logic-based program will use a depth-first search, which proves one subgoal before working on another or a breadth-first search, which works on all subgoals at the same time. If need be, a program using depth-first search will backtrack to find alternative solutions to prove subgoals that were already proven.

Object-based and logic-based languages, despite the many differences, do share some similarities concerning sequence of control. Both automatically jump to predetermined sequences when given certain calls. C++, for example, will jump to the appropriate file when given a #include statement. Prolog will jump to a database of facts when given a goal. But the greatest similarity between control flow in object-based languages and logic-based languages is how both give the user control of the execution cycle to make the program more efficient. Java allows the programmer to specify exactly which lines of code to execute by using control breaks such as the if..then statement. Similarly, Prolog allows the user to control database and subgoal ordering. If the user knows a handful of rules are used more than many others, the programmer can place those rules first in the database. Prolog allows the user to specify backtracking as well with the cut operator. For example: “

a ,b ,! ,c ,d

tells the program that if both a and b succeed and c fails, the whole goal fails.” (641) In Prolog, the cut operator and the placing of goals in the database allow the user to manually make the program more efficient, just as loops and conditionals in C++ and Java allow the user to exactly specify which lines of code to execute and when.

Handling of subprograms
In object-based languages, subprograms are composed of functions, procedures and modules, which make the program modular and easy to understand. Functions are rather easy to debug and may or may not return a value. There exist both global variables and local variables. Modules in object base programming languages provide means of packaging global data, derived types and associated operations, interface blocks, and name list groups. In logic-based languages procedures are often recursive and include some built in predicates. They may be difficult to debug. Recursive functions are a useful tool but require a lot of storage space.

Storage Management

Storage management between these two styles is very different. Object-based languages support functions and procedures, and they can be very sophisticated. They can be overloaded and the parameters may be pass-by-value or pass-by-reference. Class is one of the main features of object-based language. It is allowed to store other data types and many functions inside it. In object-based language, storage may be dynamically allocated by pointers, or statically allocated. Garbage collection functions may be used to delete unwanted storage. Storage management between the two types of languages is virtually the same, yet object oriented offers some added properties. Logic based languages do not have support for pointers or direct memory access. They also have automatic memory management for allocation and de-allocation of memory and functional languages usually have automatic garbage collection. Logic based languages also allow dynamic memory allocation. Logic languages have some limited support for pointers. Logic languages also tend to have automatic garbage collection. Logic based languages also allow dynamic memory allocation. With storage management, a variable name refers to a location in memory, which can be modified, copied and passed to another function. The scope is generally restricted to the function it is declared in. Logic languages have some limited support for pointers. Logic languages also tend to have automatic garbage collection.

Handling of abstraction and encapsulation

Both object-based and logic languages use abstraction. Object-based languages abstract code using classes, in addition to functions. Classes are also used to encapsulate data and processes. Logic languages use modules, which also provide for encapsulation. Both language types use abstract data types such as stacks, queues, priority queues and lists. Classes and modules both allow for separate compilation of code and both also enable for reuse of code. This increases the efficiency and reliability of the code. Object-based languages also allow for the creation of public, private and protected data members and member functions. The level of abstraction is more defined. Public data members and functions are not only visible to the class, but also to clients of the class. Private data members and functions are only visible to the class, which increases the abstraction in object-based languages. Protected data members and functions are visible to the class and to classes derived from the class. Friend functions are defined if access is needed to the private data members or private member functions. Abstraction is stronger for object-based languages because of ability to declare private data members and member functions, thus denying user access to those items.

References

http://134.193.15.25/vu/course/cs441/exercises/2003p1/prolog.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/eiffel.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/c%2B%2B.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/yacc.doc
http://www.cs.bsu.edu/homepages/dmz/cs335/ppt/pascal/ppframe.htm
http://www.franken.de/users/nicklas/das/papers/prolog_description/discussi.html
http://web.uvic.ca/~esg02/ling482/Prolog/intro.html
http://www.heuse.com/s.htm\
http://134.193.15.25/vu/course/cs441/exercises/2003p1/eiffel.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/prolog.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/yacc.doc
http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html
http://en.wikipedia.org/wiki/Functional_programming
http://www.cs.chalmers.se/~rjmh/Papers/whyfp.html
http://burks.brighton.ac.uk/burks/pcinfo/progdocs/plbook/logic.htm
* All page numbers in parentheses refer to pages in the class textbook:
Sebasta,Robert. Concepts of Programming Languages, 6th Edition. Colorado Springs: University of Colorado, 2003

