CS441 – Programming Languages:

Design and Implementation

Project 5
Group Members:

Brian Buckley

Ryan Johnson

Prasad Natoo

Lisa Presson
Simple Procedural and Functional

History
Fortran is an example of a simple procedural language, and was the first high-level language. Developed in 1954 by John Backus at IBM and designed for use on their IBM 704 systems, released in 1957. All versions, including the latest, FORTRAN 95, were designed as “FORmula TRANslators”. The idea was to emulate mathematical formulae in coding so that scientific applications could be written in a language that looked like math, and could be translated into machine language. Simple procedural languages were the first set of languages designed to allow programming at a higher level of abstraction than that of assembly languages. Simple procedural languages were the first set of languages designed to allow programming at a higher level of abstraction than that of assembly languages. They were a step up from assembly languages. Initially, they were developed for use exclusively on systems with specific hardware configurations, but later were developed for use on a multitude of platforms. These languages were considered Imperative languages, which are designed for sequential execution so no parallel computations were done in these early languages. Other examples include B, C, ALGOL and PL/I.
Lambda calculus could be considered the first functional programming language, though it was never designed to actually be executed on a computer. Lambda calculus is a model of computation designed by Alonzo Church in the 1930s that provides a very formal way to describe function evaluation. Functional languages were created before the advent of simple procedural languages, more precisely in the 1950’s for use in artificial intelligence. The first functional programming language was invented to provide language features for list processing, the need for which grew out of the first applications in the area of artificial intelligence. Linguists were interested in natural language processing; psychologists were interested in modeling human information storage and retrieval, along with other fundamental processes of the brain. There was also a need to grow out of the Von Neumann style of programming language design. LISP was the designed for this very purpose by John McCarthy at MIT. Scheme was a later attempt to simplify and improve LISP. Scheme supported first-class procedures, lexical scooping, and continuations. In the 1970s the language ML was created at the University of Edinburgh, and David Turner developed the language Miranda at the University of Kent. The language Haskell was released in the late 1980s in an attempt to gather together many ideas in functional programming research. The syntactic structure in functional languages is generally very simple and applying functions to arguments does the computations in these languages.

Overview

Simple procedural languages were/are used for scientific purposes while Functional languages were designed to mimic mathematical functions. Languages in this application area [simple procedural] are required to handle complex mathematical functions. Functional languages are based on mathematical functions members of a domain set are mapped to a range set. On the other hand, simple procedural languages offer efficient compilers to accomplish this task. Functional languages provide a set of primitive functions that can be used to construct complex functions using functional forms. Functional languages promote conciseness, abstractness and simplicity in the coding structure. Conversely, the structure of the simple procedural languages is pretty simple. A good example would be that of FORTRAN, which doesn’t allow new variables or space during run time. This feature is tantamount to programs running faster. FORTRAN provides a host of mathematical and scientific applications, which are very useful in the fields of engineering, computer science and mathematical orientated fields. Compared to simple procedural programming languages, the overall code size of functional programming is anywhere between 1/10th – 1/20th. In it’s specific application domain, functional languages lead to better productivity and better readability.
Handling of Data Objects

Simple Procedural languages hold data in memory-specific data types. Data types are plentiful and give the programmer the freedom to decide exactly how much memory to allocate for each variable and constant. In some simple, procedural languages, such as assembler, data can be stored directly into registers. Assembler also allows for the bit data type, the smallest possible unit of memory. In the C language, data types are usually measured in terms of bytes, with variables consuming only as many bytes as absolutely necessary. For example, short, int, long and long long are all different data types for non-floating-point numbers, the difference being the amount of memory consumed.

Functional languages are meant to mimic mathematical functions. True mathematical functions have orders of operations, recursion and functions, but do not have data types. Similarly, “a purely functional programming language does not use variables or assignment statements.” (Sebesta 6th Ed., p. 583) A true functional language, such as LISP, allows the compiler/interpreter to do all of the memory management, allocate all necessary resources, thereby freeing the programmer from these responsibilities and allowing the programmer to focus entirely on the mathematical operations.

Obviously, there exist striking differences between functional and simple-procedural languages. Assembler and C rely entirely on data types and take extraordinary measures to ensure the programmer can allocate exact quantities of memory and resources for any particular variable, constant or operation. True functional languages care nothing for memory management, have no data types and do not allow the programmer to allocate any memory. Some functional languages, such as ML and Haskell, do incorporate data types into their design. For example, ML incorporates the int and real data types and declares them with syntax that closely resembles that of the simple procedural languages:

C:

int n

ML:

n:int

While these types of similarities do exist, the declaration of data types is really an imperative feature incorporated into functional languages. Data types are not functional.
Handling of Sequence Control

Simple procedural languages have a very straightforward sequence control. All statements are executed in order, top-down. Some allowance is given for beaks in the sequential execution of programming statements. For example, in the assembly languages, the jump statement is used to go directly to a label that occurs at a predetermined place in the source code. The C language contains more structures to deter from the sequential control flow. Conditional statements, such as the if..then statement, allow the program to execute a chunk of code only if a certain value is true. Loops, such as the for, while and do loops, allow a chunk of code to execute multiple times.

Functional languages differ greatly from the straightforward, sequential control flow in simple, procedural languages. Functional languages, just as they do for data types, take responsibility away from the programmer. “Whereas functions in imperative languages are defined as collections of statements that may include several kinds of sequence control flow, mathematical functions do not have multiple statements and use only recursion and conditional expressions for evaluation flow.” Take the following Scheme definition of the factorial function (Sebesta 6th Ed., p. 592):

(DEFINE (factorial n)

(IF (=n 0)

1

(* n(factorial (- n 1)))

))

This functional expression closely resembles the mathematical definition of a factorial expression. Simple, procedural languages do not model functions based on math. However, both functional and simple, procedural languages have conditional expressions. The IF statement above resembles the if statement in C. Scheme also allows a COND expression that allows more than one predicate to be true at the same time, similar to using the && logical AND operator in an if statement in C.

Handling of Subprograms

In simple procedural languages, subprograms which are functions or procedures are executed in a line-by-line manner and have calls to functions or subprograms. They can pass parameters by value or reference. Simple procedural programs typically have many built in math functions because they are scientific in nature. Because of their scientific application, many functions are already provided for in simple procedural languages. These include mathematical functions, trig functions, character operations, and operations for complex numbers. Some languages in the family may or may not allow recursion. Early versions of FORTRAN for example do not allow recursion while ALGOL does. Simple Procedural and Functional languages are similar in that they both utilize recursion. Functional languages have subprograms, which are usually called functions. These functions allow the languages to utilize recursion. All functional languages have many built in functions such as arithmetic functions, looping functions and other list manipulation functions. These new functions are defined in terms of existing functions. Once a function is defined it may be used in the same fashion as functions that are built into the language. Finally, sub-programs in functional languages are not named if they are locally scoped and not reused.

Storage Management

In simple procedural languages variable names refer to a location in memory, which can be modified, copied, or passed to another function. Most of the simple-procedural languages use dynamic allocation of memory, but some only use static allocation. The scope in simple procedural families is generally restricted to the function in simple procedural languages. Functional languages are also similar in the fact that they use garbage collection to save memory space. In the scheme of things, objects are dynamically allocated in a heap where they are kept until no longer needed, then the memory is automatically de-allocated. In both groups of language families, large functions can be created by using smaller and simpler functions. Both groups allow recursive and simple call-return functions. Classes are one of the main features of object-based language. It is allowed to store other data types and many functions inside it. In object-based language, storage may be dynamically allocated by pointers, or statically allocated. Garbage collection functions may be used to delete unwanted storage. Functional languages do not have support for pointers or direct memory access. They also have automatic memory management for allocation and de-allocation of memory and functional languages usually have automatic garbage collection.
Handling of Abstraction and Encapsulation

Abstraction is used in both simple procedural and functional languages. Functions are used as a form of abstraction. A function may be called through the main program. Since functions are called to perform certain actions, abstraction of code is provided in the functions. The user of the program does not need to know all the details of the function to be able to use it. Both languages use subprograms for encapsulation of the code. The level of encapsulation for functional languages does not go far beyond using functions. Simple procedural language, however, handle encapsulation differently. For example, the Assembler language does not support encapsulation; however, the C language does. C uses subprograms for encapsulation. Modules can be created for encapsulating the code. This also allows for the modules to be compiled separately.
Functional and Logic Based

History

Functional languages were created in the 1950’s for use in artificial intelligence, whilst Logic based programming languages came later, in the 1970’s. One of the first functional languages developed was developed by John McCarthy specifically to handle mathematical and algebraic expressions. Lambda calculus could be considered the first functional programming language, though it was never designed to actually be executed on a computer. Lambda calculus is a model of computation designed by Alonzo Church in the 1930s that provides a very formal way to describe function evaluation. Functional languages were created before the advent of simple procedural languages, more precisely in the 1950’s for use in artificial intelligence. The first functional programming language was invented to provide language features for list processing, the need for which grew out of the first applications in the area of artificial intelligence. Linguists were interested in natural language processing; psychologists were interested in modeling human information storage and retrieval, along with other fundamental processes of the brain. Prolog was the most widely used logic programming languages; it was developed in France at the University of Aix-Marseille by Colmerauer and Rousselat and in England at the University of Edinburgh by Kowalski. The plan was to develop a language that emulated predicate calculus, as the procedural languages emulated mathematics. Applications include database management and Artificial Intelligence, and are limited in scope. Coming back, Functional languages were developed mainly for symbolic computations and are based on mathematical functions while Logic languages, or declarative languages, were developed based on predicate calculus. Both language types where used in artificial intelligence.

Overview
Functional languages were designed to mimic mathematical functions. Because they are based on mathematical functions members of a domain set are mapped to a range set. Functional languages provide a set of primitive functions that can be used to construct complex functions using functional forms. Also included is a function application operation and a structure for storing data. They were primarily created for use in artificial intelligence (AI). In contrast, Logic programming involves declarative, relational programming based on first-order logic, via Horn clauses, where programmers write databases of facts and rules (clauses), and users supply goals, which programs work to prove via resolution or backward chaining. Logic programming is used extensively in artificial intelligence, AI. Specific problems are solved using the truth or falsehood of the processes, rather than the computed value. This has been likened to using the logical components of the CPU, versus the arithmetic components. This strategy makes for very difficult and inefficient programming, but is well suited for applications in artificial intelligence that depend on decision making. Applications include database management, expert systems, and processing of natural languages, again, where decision-making is more logic focused than mathematically computed. Logic languages check to see if the process is correct where functional languages return a computed value. Both functional languages and logic-based languages are generally very simple syntactically and quite often used in artificial intelligence and the scientific realm. Lisp totally dominated Artificial Intelligence applications for a quarter of a century, and is still the most widely used language for AI. Many programming language researchers believe that functional programming is a much better approach to software development, than the use of Imperative Languages (Pascal, C++, etc). Functional programming languages application areas include [but are not limited to] - rapid prototyping, academia, general purpose programming tool, artificial Intelligence, AI Robots, Computer Games (Craps, Connect-4, Blackjack), pattern recognition, air defense Systems, implementation of Real-Time, embedded Knowledge-Based Systems and list Handling and Processing, tree traversal (Breath/Depth First Search).

Handling of Data Objects

As stated above, true functional languages do not have data types, but mimic mathematics in the use of functions, recursion and order of operation. Some functional languages do incorporate imperative features such as declaring data types. But in large, functional languages are meant to take the burden of memory management away from the programmer to allow more focus on mathematical operations. Logic-based languages also aim to take the burden of memory management away from the programmer, but in a slightly different way.

Logic-based languages, such as Prolog, have very few data types: atom, list, integer and term. Prolog does not require that a data type be declared before its use and, with some exception, does not require that a variable have strong typing, meaning it can freely change from one data type to another without a casting operation. These techniques free the programmer from having to worry about managing data types and focus on Prolog’s main focus: goal resolution.

In Prolog, one may type

brian(man)

And the program will determine if the statement is true or not. Similarly, in LISP, one may type the following function to square a number:

(LAMBDA (x) (* x x))

For both of these statements, most of the actual mathematics, memory distribution and allocation is done behind the scenes, at the computer level. The programmer need not worry about bytes, or how much memory a certain operation consumes. The programmer need only worry about a particular function or goal.

Handling of Sequence Control

Functional and logic-based languages are similar in the fact that they use abstraction to hide the intricacies of sequence control from the programmer. As stated above, functional languages focus on the recursion and control expressions found in true mathematical expressions, allowing the programmer to focus more on the mathematics than the way a compiler interprets source code. Similarly, logic-based languages use internal search techniques, chaining and backtracking, which allows the programmer to focus on goal resolution rather than how a search is conducted.

While both functional and logic-based languages deviate from the imperative languages’ more explicit, detailed methods of sequence control, both languages share many differences. Foremost, logic-based languages have an internal database of facts that does not exist in functional languages. Most of logic-language sequence control occurs searching the database in goal resolution. When a logic-based language sees a goal statement such as brian(man), it will traverse a database proving various subgoals in an attempt to ultimately prove the statement. Prolog does this search depth-first, proving one goal at a time. If unable to prove the goal, it will backtrack, and try to prove already proven goals in different ways in an attempt to ultimately prove the statement.

Functional languages have no internal database and therefore do not implement depth-first searches and do not backtrack through already finished subprocedures. Functional languages do not match in the same way as logic-based languages match a goal to a fact in a database. However, both functional languages and logic-based languages determine the answer to problems by matching a given with a result. For example, if a Scheme program tried to factorial the number 1, it would see the statement:

(IF (=n 0)

1

and produce the answer 1. Similarly, if the following statement occurred in Prolog

factorialOfOne(1)

and the internal database had this fact in it, it would match the fact to the premise and return that the answer was true. Whereas Scheme uses conditionals and Prolog uses facts in a database, both match a current value to a predetermined fact to reach an answer.
Handling of Subprograms

Functional languages have subprograms, which are usually called functions. These functions allow the languages to utilize recursion. All functional languages have many built in functions such as arithmetic functions, looping functions and other list manipulation functions. These new functions are defined in terms of existing functions. Once a function is defined it may be used in the same fashion as functions that are built into the language. Finally, sub-programs in functional languages are not named if they are locally scoped and not reused. Just like functional styles, logic-based language’s procedures are often recursive and include some built in predicates. They may be difficult to debug. Recursive functions are a useful tool but require a lot of storage space. To Different from functional styles, logic-based languages make it very difficult to use their subprograms which can be included as a function, but they only return a true or false value.

Storage Management

Storage management between these styles is very similar. Logic based languages also allow dynamic memory allocation, and they are somewhat similar to functional languages. With storage management, a variable name refers to a location in memory, which can be modified, copied and passed to another function. The scope is generally restricted to the function it is declared in. Logic languages have some limited support for pointers. Logic languages also tend to have automatic garbage collection. Storage management between these two styles is very different. Logic based languages do not have support for pointers or direct memory access. They also have automatic memory management for allocation and de-allocation of memory and functional languages usually have automatic garbage collection, which is more advanced compared to functional languages. Logic based languages also allow dynamic memory allocation. Logic based languages also allow dynamic memory allocation. With storage management, a variable name refers to a location in memory, which can be modified, copied and passed to another function. The scope is generally restricted to the function it is declared in.
Handling of Abstraction and Encapsulation

Functional languages handle abstraction using functions. Logic based languages handle abstraction use modules and abstract data types. Prolog, a logic based language, specifically uses a high-level use of abstraction. It does not require as much knowledge about how a machine processes information or instructions expressed in the statements of the language. Logic languages are declarative rather than procedural. Logic programming languages use modules for stronger levels of encapsulation. Functional languages encapsulate code using subprograms, specifically functions. Modules allow for separate compilation of code and enables for a stronger reuse of code than functions allow. This increases the efficiency and reliability of the code. Logic languages provide a higher level of abstraction than functional languages with the use of abstract data types (i.e., stacks, queues, priority queues and lists) and modules.

References

http://134.193.15.25/vu/course/cs441/exercises/2003p1/assembler.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/prolog.doc
http://134.193.15.25/vu/course/cs441/exercises/2003p1/yacc.doc
http://l.students.umkc.edu/lpec9z/proj1.htm
http://web.uvic.ca/~esg02/ling482/Prolog/intro.html
http://www.cs.bsu.edu/homepages/dmz/cs335/presenter.html
http://www.cs.ucla.edu/classes/fall02/cs131/
http://www.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html
http://www.engin.umd.umich.edu/CIS/course.des/cis400/miranda/miranda.html
http://www.incywincy.com/default?p=6243
http://www.pcai.com/web/ai_info/pcai_lisp.html
Sebesta, Robert W. Concepts of Programming Languages. 5th Ed., Addison-Wesley Publishing, CA, 2002.

Sebesta, Robert W.. Concepts of Programming Languages. 6th Ed., Colorado Springs: University of Colorado, 2003

PAGE

